
Journal of Hydrology 387 (2010) 33–45
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
A simple inertial formulation of the shallow water equations for efficient
two-dimensional flood inundation modelling

Paul D. Bates a,*, Matthew S. Horritt b, Timothy J. Fewtrell a

a School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
b Halcrow Ltd., Burderop Park, Swindon, Wiltshire SN4 0QD, UK

a r t i c l e i n f o
Article history:
Received 27 May 2009
Received in revised form 19 October 2009
Accepted 22 March 2010

This manuscript was handled by
K. Georgakakos, Editor-in-Chief, with the
assistance of Ehab A. Meselhe, Associate
Editor

Keywords:
Shallow water flow
Flood propagation
Inundation modelling
Hydraulic modelling
0022-1694/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.jhydrol.2010.03.027

* Corresponding author. Tel.: +44 117 928 9108; fa
E-mail address: paul.bates@bristol.ac.uk (P.D. Bate
s u m m a r y

This paper describes the development of a new set of equations derived from 1D shallow water theory for
use in 2D storage cell inundation models where flows in the x and y Cartesian directions are decoupled.
The new equation set is designed to be solved explicitly at very low computational cost, and is here tested
against a suite of four test cases of increasing complexity. In each case the predicted water depths com-
pare favourably to analytical solutions or to simulation results from the diffusive storage cell code of
Hunter et al. (2005). For the most complex test involving the fine spatial resolution simulation of flow
in a topographically complex urban area the Root Mean Squared Difference between the new formulation
and the model of Hunter et al. is �1 cm. However, unlike diffusive storage cell codes where the stable
time step scales with (1/Dx)2, the new equation set developed here represents shallow water wave prop-
agation and so the stability is controlled by the Courant–Freidrichs–Lewy condition such that the stable
time step instead scales with 1/Dx. This allows use of a stable time step that is 1–3 orders of magnitude
greater for typical cell sizes than that possible with diffusive storage cell models and results in commen-
surate reductions in model run times. For the tests reported in this paper the maximum speed up
achieved over a diffusive storage cell model was 1120�, although the actual value seen will depend on
model resolution and water surface gradient. Solutions using the new equation set are shown to be
grid-independent for the conditions considered and to have an intuitively correct sensitivity to friction,
however small instabilities and increased errors on predicted depth were noted when Manning’s n = 0.01.
The new equations are likely to find widespread application in many types of flood inundation modelling
and should provide a useful additional tool, alongside more established model formulations, for a variety
of flood risk management studies.

� 2010 Elsevier B.V. All rights reserved.
Introduction

Since first proposed by Zanobetti et al. (1970) methods to predict
floodplain inundation using storage cell approaches have become
justifiably popular. Initially, such methods discretized floodplains
into irregular polygonal units representing large (surface areas of
100–101 km2) natural storage compartments and calculated the
fluxes of water between these according to some uniform flow for-
mulae such as the weir or Manning’s equations. For many such
models in-channel flows are calculated using some form of the
1D Saint–Venant equations, and when bankfull flow is exceeded
water is routed into and between the floodplain storage units. Most
commercial 1D codes now include such a floodplain representation.
More recently the availability of increased computing power and
detailed descriptions of floodplain topography available through
remote sensing (e.g. LiDAR data, Marks and Bates, 2000) has
ll rights reserved.

x: +44 117 928 7878.
s).
allowed a move away from large, irregular storage units to the dis-
cretization of the floodplain as a fine spatial resolution regular grid
(cell areas of 10�2–10�3 km2). Here each cell within the grid is a
storage area for which the mass balance is updated at each time
step according to the fluxes of water into and out of each cell. Sim-
ilar to polygonal storage cell models, fluxes are calculated analyti-
cally using uniform flow formulae but with the advantage of
higher resolution predictions and removal of the need for the mod-
eller to make explicit decisions about the location of storage com-
partments and the linkages between these. Numerous such
models are now available (e.g. Estrela and Quintas, 1994; Bechteler
et al., 1994; Bates and De Roo, 2000) and a similar blueprint has
increasingly been adopted in commercial modelling packages (e.g.
JFLOW by JBA Ltd., FlowRoute by Ambiental and the RMS Ltd., UK
Flood Risk Model). Such models therefore solve a continuity equa-
tion relating flow into a cell and its change in volume:

Dh
Dt
¼ DQ

DxDy
ð1Þ
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and a flux equation for each direction where flow between cells is
calculated according to Manning’s law (only the x direction is given
here):

Q i;j
x ¼

h5=3
flow

n
hi�1;j � hi;j

Dx

 !1=2

Dy ð2Þ

where hi,j is the water free surface height [L] at the node (i, j), Dx
and Dy are the cell dimensions [L], t is the time [T], n is the Man-
ning’s friction coefficient [L�1/3 T], and Qx and Qy describe the volu-
metric flow rates between floodplain cells [L3 T�1]. Qy is defined
analogously to Eq. (2). The flow depth, hflow, represents the depth
through which water can flow between two cells, and is defined
as the difference between the highest water free surface in the
two cells and the highest bed elevation. These equations are solved
explicitly using a finite difference discretization of the time deriva-
tive term:

tþDthi;j � thi;j

Dt
¼

tQ i�1;j
x � tQ i;j

x þ tQ i;j�1
y � tQ i;j

y

DxDy
ð3Þ

where th and tQ represent depth and volumetric flow rate at time t
respectively, and Dt is the model time step which is held constant
throughout the simulation.

The advantage of the storage cell formulation is that fluxes are
calculated analytically so the computational costs per time step are
potentially much lower than in equivalent numerical solutions of
the full shallow water equations. The method is also simple in con-
cept and it is therefore relatively easy to develop and maintain
code that can perform the calculations. Such methods also inter-
face readily with newly available remotely sensed terrain data
which typically arrives in the form of a regular grid. For this reason
the number of research and commercial codes based on these tech-
niques has proliferated over the last decade (for a review see Hun-
ter et al. (2007)). Whilst the method can only be applied to
gradually varied flows and does not include inertia or the ability
to capture supercritical effects, for many floodplain inundation
problems the representation is appropriate.

Such storage cell models were originally conceived for applica-
tion at relatively coarse grid resolutions (25–100 m) and early
applications showed that at these scales there was a distinct com-
putational advantage over full solutions of the 2D Saint–Venant
equations (see for example Horritt and Bates, 2001, 2002). This al-
lowed new applications of hydraulic models to be considered
including Monte Carlo uncertainty analysis (Aronica et al., 2002),
inclusion of hydraulic models in ensemble forecasting chains (Pap-
penberger et al., 2005) and model applications to domain scales or-
ders of magnitude larger than anything previously attempted (e.g.
Wilson et al., 2007). Despite these successes, a number of concerns
became apparent. First, unless the constant time step used to solve
Eq. (3) was small, simulations with storage cell models quickly
developed ‘chequerboard’ type instabilities as all the water in a
particular cell drained into the adjacent ones in a single (large)
time step (Cunge et al., 1980). At the next time step, this situation
would reverse and all the water would flow back. To solve this
problem many modellers introduced some kind of ‘flow limiter’
to prevent the solution over-shooting and too much water leaving
a given cell in a single time step. The flow limiter sets the maxi-
mum flow that can occur between cells and is typically a function
of flow depth, grid cell size and time step. In LISFLOOD-FP, for
example, the flow limiter used is:

Q i;j
x ¼min Q i;j

x ;
DxDyðhi;j � hi�1;jÞ

4Dt

 !
ð4Þ

This value is determined by considering the change in depth of a
cell, and ensuring it is not large enough to reverse the flow in or out
of the cell at the next time step. This limiter replaces fluxes calcu-
lated using Manning’s equation with values dependent on model
parameters, and hence when the flow limiter is in use floodplain
flows are sensitive to grid cell size and time step, and insensitive
to Manning’s n.

Flow limiters were rarely discussed in journal publications at
the time as their significance was not appreciated, but it was clear
from the cell sizes and time steps used in these early applications
that for many cells at each time step a flow limiter was being in-
voked. As a result flow-limited storage cell models often showed
very little sensitivity to floodplain friction and their results were
strongly dependent on the grid size and time step selected. There
is a legitimate debate over the degree of sensitivity to floodplain
friction one should expect in an inundation model given that flood-
plain velocities are usually very small, but the almost complete
lack of such sensitivity in certain applications of flow-limited stor-
age cell models appeared to be more than could be explained in
physical terms.

A solution to this problem was provided by Hunter et al. (2005)
based on adaptive time-stepping. This approach seeks to remove
the need to invoke the flow limiter (Eq. (4)) by finding the opti-
mum time step (large enough for computational efficiency, small
enough for stability) at each iteration. This optimum time step is
obtained using an analysis of the governing equations and their
analogy to a diffusion system which gives the following expression
for Dt:

Dt ¼ Dx2

4
min

2n
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flow
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A scheme that uses this criterion can be implemented by
searching the domain for the minimum time step value and using
this to update h in Eq. (3). The time step will thus be adaptive and
change during the course of a simulation, but is uniform in space at
each time step. Hunter et al. (2005) tested this new uncondition-
ally stable time step formulation against analytical solutions for
wave propagation over flat and planar slopes and showed a consid-
erable improvement over the classical fixed time-step version of
the model. Moreover, the adaptive scheme was shown to yield re-
sults that were independent of grid size or choice of initial time
step and which showed an intuitively correct sensitivity to flood-
plain friction over spatially-complex topography. Hunter et al.
(2006) went on to test the new version of the LISFLOOD-FP model
against real world flood extent and wave travel time data for the
upper River Severn in the UK for a model at 60 m spatial resolution.
The adaptive time step model showed a better absolute perfor-
mance than the classical fixed time-step version at this spatial res-
olution, but at approximately six times the computational cost. In
particular the adaptive model appeared able to simulate floodplain
wetting and drying more realistically.

Despite this success, the results obtained by Hunter et al. (2006)
identified a fundamental problem with Eq. (5), namely that the
optimum stable time step reduces quadratically with decreasing
grid size. For an explicit code this means that the computational
cost will increase as (1/Dx)4. For applications with grid sizes in
the range for which LISFLOOD-FP was originally designed (25–
100 m, Bates and De Roo, 2000) this led to a 2–10� increase in sim-
ulation times which could be offset through advances in processor
speed. Any residual cost increases could then be justified easily as
simulations were more realistic. However, for the finer resolution
(1–10 m) grids required for application of hydraulic models to ur-
ban areas (Fewtrell et al., 2008) simulation costs increased by sev-
eral orders of magnitude such that at these scales adaptive time
step storage cell codes actually proved slower than full 2D solu-
tions of the shallow water equations. Hunter et al. (2008) found
during benchmark testing of six 2D models applied at 2 m spatial
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resolution to a 0.4 km2 area of Glasgow UK that numerical solu-
tions of the full shallow water equations completed a 2 h real time
simulation in around 1 h (depending on code complexity and pro-
cessor architecture), whilst the storage cell codes took approxi-
mately an order of magnitude longer.

Although a less serious problem, the dependence of the time
step on the water surface slope in Eq. (5) also means that the time
step is reduced for areas with flat water surfaces, where intuitively
we would expect the governing equations to be easier to solve. In
the limit of a horizontal water surface, the time step is forced to
zero, whereas the solution (zero flow in all directions) is trivial.
In practice, the divergence of computation times in time-adaptive
storage cell models as the water comes to rest is avoided by apply-
ing a linearization for small surface slopes (see Hunter et al., 2005).

Adaptive time step storage cell codes are therefore incompati-
ble with the fine spatial resolution grids increasingly required for
urban flood modelling. The only solution to date is to invoke a flow
limiter, but this leads to a poor representation of flow dynamics.
Whilst for fine grids full 2D models give shorter simulation times
at current processor speeds, for practical applications they are still
only able to treat small (<1 km2) areas at the required level of de-
tail. It is clear that to allow wide area urban flood modelling at fine
spatial resolution a new hydraulic model formulation is required.
Development and testing of such an approach is the fundamental
aim of this paper where we describe a set of flow equations for
adaptive time step storage cell models which can overcome the
quadratic dependency on grid size in Eq. (5) yet which can be
solved analytically with approximately the same computational
cost as Eq. (2). The new scheme therefore retains all the computa-
tional advantages of storage cell models over full 2D codes whose
equations require expensive numerical solution, yet with none of
the previous disadvantages. Below we describe the derivation of
the new set of equations from first principles, and then the new
formulation is subject to a number of analytical and benchmark
tests of increasing complexity. Finally, results are discussed and
conclusions drawn.

Derivation of an inertial formulation of the shallow water
equations

The route to a new set of equations for fast inundation model-
ling in two dimensions was identified in the urban model bench-
marking study of Hunter et al. (2008). It was clear from this
comparison that the lack of mass and inertia in Eq. (2) was the
key reason why storage cell models required the strict time step
control implied by Eq. (5). In gradually varying shallow water flows
the effect of inertia is to reduce fluxes between cells, yet in Eq. (5)
flux is merely a function of gravity and friction. Eq. (5) therefore
overestimates fluxes, particularly, as noted above, in areas of deep
water where there is only a small free surface gradient. Hunter
et al. (2008) suggested that the solution was to modify explicit
storage cell codes to include inertial terms (or simple approxima-
tions to these) that may allow the use of a larger stable time step,
and hence quicker run times. In addition, inclusion of inertial ef-
fects may also be important to represent the flow physics in partic-
ular environmental settings.

Our starting point for derivation of such an equation is therefore
the momentum equation from the quasi-linearized one-dimen-
sional Saint–Venant or Shallow Water equations:

@Q
@t|{z}
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þ @

@x
Q2

A

" #
|fflfflfflfflffl{zfflfflfflfflffl}

advection

þ gA@ðhþ zÞ
@x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

water slope
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where Q [L3 T�1] is the discharge, A is the flow cross section area
[L2], z is the bed elevation [L], R is the hydraulic radius [L], g is
the acceleration due to gravity [L T�2] and all other terms are de-
fined as above. For many floodplains flows advection is relatively
unimportant (see Hunter et al. (2007) for a discussion of the magni-
tude of terms in the shallow water equations) so we neglect this
term, assume a rectangular channel and divide through by a con-
stant flow width, w [L], to obtain an equation in terms of flow per
unit width, q [L2 T�1]:

@q
@t
þ gh@ðhþ zÞ

@x
þ gn2q2

R4=3h
¼ 0 ð7Þ

For wide, shallow flows we can approximate the hydraulic ra-
dius, R, with the flow depth, h. We can now discretize Eq. (7) with
respect to the time step, Dt, to give:

qtþDt � qt

Dt

� �
þ ght@ðht þ zÞ

@x
þ gn2q2

t

h7=3
t

¼ 0 ð8Þ

And rearrange to give an explicit equation for q at time t + Dt:

qtþDt ¼ qt � ghtDt
@ðht þ zÞ

@x
þ n2q2

t

h10=3
t

" #
ð9Þ

This gives an equation for the unit flow at the next time step,
qt+Dt, in terms of qt, ht and z and hence can be solved explicitly at
a very similar cost to Eq. (2), as it contains only a single additional
term. The advantage of this formulation is that since the accelera-
tion term is now included, the water being modelled has some
mass, and it is therefore less likely to generate the rapid reversals
in flow which lead to a chequerboard oscillation. Shallow water
wave propagation will also be represented, rather than the diffu-
sive behaviour typical of previous storage cell models.

Eq. (9) can be improved further, since instabilities may still arise
at shallow depths when the friction term becomes large. Replacing
a qt in the friction term by a qt+Dt leads to an equation linear in the
unknown qt+Dt but which has some of the improved convergence
properties of an implicit time stepping scheme:

qtþDt ¼ qt � ghtDt
@ðht þ zÞ

@x
þ n2qtqtþDt

h10=3
t

" #
ð10Þ

Eq. (10) can rearranged into an explicit form for calculation of
flows at the new time step in the model:

qtþDt ¼
qt � ghtDt @ðhtþzÞ

@x

1þ ghtDtn2qt=h10=3
t

� � ð11Þ

The enhanced stability of Eq. (11) stems from the increase in the
denominator as the friction term increases, forcing the flow to zero,
as would be expected for shallow depths. A similar approach is
used in Liang et al. (2006) to improve the stability of a full 2D shal-
low water model.

Unlike (2), Eq. (11) includes shallow water wave propagation so
while stability is improved, it is still subject to the Courant–Freid-
richs–Levy condition:

Cr ¼
VDt
Dx

ð12Þ

where the non-dimensional Courant number, Cr, needs to be less
than 1 for stability and V is a characteristic velocity [L T�1]. In the
case of a shallow water flow where advection is ignored this char-
acteristic velocity is:ffiffiffiffiffiffi

gh
p

ð13Þ

where
ffiffiffiffiffiffi
gh

p
is the celerity of a long wavelength, small amplitude

gravity wave. Eq. (12) gives a necessary but not sufficient condition
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for model stability, and is used to estimate a suitable model time
step at t + Dt:

Dtmax ¼ a
Dxffiffiffiffiffiffiffi
ght

p ð14Þ

where a is a coefficient in the range 0.2–0.7 used to produce a stable
simulation for most floodplain flow situations. The parameter a is
included because Eq. (12) is not sufficient to ensure model stability,
because the assumption of small amplitude in calculating the wave
celerity is not always valid, and because of the inclusion of friction
terms in the model. The stable time step is therefore often some-
what less than that indicated by the Courant–Friedrichs–Lewy con-
dition, and so the parameter a is introduced to reduce the time step.
Despite these limitations in the application of the condition, Eq. (14)
represents a useful approach to time step selection for a wide range
of flow conditions, subject to an appropriate choice of a.

This time step is typically 1–3 orders of magnitude larger than
the stable time step for the purely diffusive scheme of Eq. (5).
Moreover, within this range, proportionally larger time step differ-
ences become apparent as the grid size decreases, as for Eq. (14)
time step scales with 1/Dx rather than (1/Dx)2. Hence, we expect
the new flux equation and adaptive time step constraint to be sig-
nificantly more computationally efficient than previous storage
cell models. The performance of this new set of equations and
the extent of this potential improvement is analysed in the follow-
ing section.
Fig. 1. Predicted water surface elevation (z) at t = 3600 s for wave propagation over
a horizontal beach simulated at 50 m spatial resolution and n = 0.03 using: (a) a
fixed time step (Dt = 1 s) flow limited diffusive model (Eqs. (2)–(4), light grey
dashed line); (b) an adaptive time step diffusive model (Eqs. (2), (3), and (5), mid
grey dashed line); and (c) the new adaptive time step inertial model developed in
this paper (Eqs. (3), (11), and (14), dark grey dashed line). Each model is compared
to the analytical solution of Eq. (15) (solid black line). Summary numerical results
for these simulations are reported in Table 1.
Model testing and results

Eqs. (11) and (14) were implemented within the LISFLOOD-FP
hydraulic model of Bates and De Roo (2000). This code has been
developed extensively since conception from a simple storage cell
model written in the PC-RASTER language (Bates and De Roo,
2000), to a flow limited code written in C++ (Horritt and Bates,
2001) and finally to an adaptive time step code using Eq. (5) (Hun-
ter et al., 2005, 2006). At each step previous variants were retained
in the code and can be readily switched on or off. Finally, the LIS-
FLOOD-FP code has recently been placed within a version control
system, re-written in modular form (Fewtrell, 2009) and parallel-
ized using Open-MP (Neal et al., 2009). Implementing and compar-
ing new code variants is thus relatively straightforward given
previous work on refining the code structure and bug fixing.

The new inertial formulation of LISFLOOD-FP was assessed
against a structured sequence of numerical experiments that pro-
vide a rigorous test of its numerical and computational perfor-
mance. Three of these tests are taken from Hunter et al. (2005),
and for the final test we simulate the urban flooding problem used
in the benchmarking studies of Hunter et al. (2008) and Fewtrell
et al. (2008). Specifically these tests are:

Test 1: Non-breaking wave propagation over a horizontal plane
and comparison to an analytical solution.
Test 2: Non-breaking wave run-up on a planar beach and com-
parison to an analytical solution.
Test 3: Wetting and drying of a planar beach (i.e. a full tidal
cycle).
Test 4: Simulation of flood propagation through a complex
street and building network at fine spatial resolution.

In each case the new inertial formulation is compared to the
adaptive time step diffusive model (Eqs. (2) and (5)) of Hunter
et al. (2005) in terms of root mean squared error (or difference),
% volume error, minimum time step during the simulation and to-
tal computational time. Tests 1–3 were run on a single 2.66 GHz
node of a dual-core Intel Core2 Duo processor with 3 Gb of RAM,
whilst Test 4 was run on a single 2.8 GHz node of a quad-core Intel
Xeon Harpertown E5462 processor with 12 Mb of cache memory.
The executables for both processors were built using the Intel
C++ compiler. Test 4 has also been used by Hunter et al. (2008)
to benchmark the performance of six 2D inundation models, by
Lamb et al. (2009) to evaluate an implementation of the JFLOW
adaptive time step diffusive storage cell code designed to run on
massively parallel Graphics Processor Units (GPUs) and by Schu-
bert et al. (2008) to test an unstructured finite element model for
urban applications. These latter studies also report data on compu-
tational efficiency which provides important information on the
likely comparative speed of models built with our new equation
set.
Test 1: non-breaking wave propagation over a horizontal plane

Hunter et al. (2005) developed a one-dimensional analytical
solution for inundation model testing where the full Saint–Venant
equations can be simplified to yield an ordinary non-linear differ-
ential equation. This can then be solved analytically to provide rig-
orous validation solutions. The analytical solution presented below
is for the propagation of a non-breaking wave over a horizontal
plane which allows us to test the ability of inundation models to
simulate wave movement correctly in the absence of a bed slope
term (i.e. So = 0). In fact, this is not a true analytical solution to
the inertial equation solved by the model and thus we would not
expect the model results to fully converge to the analytical solution
although at fine grid resolutions it should be a close approxima-
tion. The derivation of the analytical solution is given in Hunter
et al. (2005) and is not repeated here, however the final equation
for the water depth, h, at any point in space x or at any time, t, is:

hx;t ¼
7
3

C � n2u3ðx� utÞ
� �	 
7=3

ð15Þ

where u is the component of depth-averaged velocity in the x direc-
tion, C is a constant of integration, which can be fixed by referring to
the initial conditions of the problem (i.e. h at x = 0 and t = 0) and all
other terms are defined as previously. Eq. (15) can now be used to
provide an analytical solution against which the model can be
tested with boundary conditions in the form of h(t) at x = 0, and ini-
tial conditions in the form of h(x) at t = 0. Here this solution was



Table 1
Summary of numerical and computational efficiency results from Tests 1, 2, 3 and 4.

Test case Model Root Mean Square Error (RMSE, in m) from analytical
solution, or Root Mean Squared Difference (RMSD, in
m), from diffusive model

Volume error
from analytical
solution (%)

Minimum time
step during
simulation (s)

Total
computation
time (min)

Speed up
using
inertial
version

Test 1: horizontal beach,
Dx = 50 m, n = 0.03

Diffusive 0.06 1.27 0.15 0.33
Inertial 0.03 �1.25 7.25 0.02 17�

Test 2: planar beach,
Dx = 50 m, n = 0.03

Diffusive 0.02 �0.17 0.02 1.22
Inertial 0.11 �1.16 4.93 0.02 61�

Test 3: wetting and drying
of a planar beach,
Dx = 50 m, n = 0.03

Diffusive – – 0.03 1.80
Inertial See Fig. 7 – 5.59 0.03 60�

Test 4: Glasgow flooding,
2 m resolution, spatially
uniform friction

Diffusive 0.003 155.0
Inertial 0.01 0.43 1.47 105�

Table 2
Impact of grid resolution on RMSE and volume error for simulations of non-breaking
wave propagation over a horizontal plane with n = 0.03.

Grid
resolution
(m)

Model Root Mean
Square
Error
(RMSE, in
m) from
analytical
solution

Volume
error
from
analytical
solution
(%)

Minimum
time step
during
simulation
(s)

Total
computation
time (min)

5 Diffusive 0.006 �0.099 0.002 514.7
Inertial 0.07 �2.37 0.73 2.33

10 Diffusive 0.013 0.071 0.006 32.02
Inertial 0.065 �2.25 1.45 0.35

25 Diffusive 0.03 0.67 0.04 2.60
Inertial 0.05 �1.89 3.62 0.12

50 Diffusive 0.06 1.27 0.15 0.33
Inertial 0.03 �1.25 7.25 0.02

100 Diffusive 0.09 2.67 0.60 0.05
Inertial 0.05 0.25 14.51 0.02

200 Diffusive 0.15 4.94 2.41 0.03
Inertial 0.11 2.95 29.04 0.01
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implemented using parameter values of u = 1 ms�1, Dx = 50 m and
n = 0.03 m�1/3s for a simulation of duration 3600 s.

Fig. 1 shows the water surface elevations predicted by the diffu-
sive and inertial models at the end of the simulation (i.e. at
t = 3600 s) compared to the analytical solution (solid black line) gi-
ven by Eq. (15). For this case only, Fig. 1 also shows the water ele-
vations predicted by a flow limited diffusive model with a fixed
time step of 1 s. The Root Mean Square Error (RMSE), volume error,
minimum time step during the simulation and the total computa-
tion time for each of these simulations are also summarised in Ta-
ble 1. These results show that the new inertial formulation is able
to match the analytical solution well, with an RMSE half that of the
diffusive solution (0.03 m compared to 0.06 m) and similar volume
errors. By contrast, the flow limited diffusive model simulates
wave propagation, wave front position and water depths poorly
and therefore is not considered here further. The minimum time
step achieved during the inertial model run is also �48� larger
than that for the diffusive model, and this translates to a 17� speed
up in computational time. The gearing of minimum time step to
computation time is due to the fact that: (a) for short simulations
the fixed costs of running LISFLOOD-FP (data input and output,
data consistency checks, etc.) actually become a relatively large
proportion of the total simulation time; and (b) timings for simu-
lations which last only a few seconds may not necessarily be suffi-
ciently precise. Hence the full speed up potential may not be seen
for this particular test case.

To test whether these results were sensitive to grid resolution,
identical simulations were also run with the diffusive and inertial
models at Dx = 5, 10, 25, 100 and 200 m. Predicted water eleva-
Fig. 2. Predicted water surface elevation (z) at t = 3600 s for wave propagation over a
(denoted with dark to light grey lines respectively) and n = 0.03 using: (a) an adaptive ti
model (dotted lines). Each model is compared to the analytical solution (solid black line
tions from these simulations at t = 3600 s are shown in Fig. 2 and
summarised in Table 2. The inertial model outperformed the diffu-
sive model in terms of RMSE and volume error at Dx = 50, 100 and
200 m, whereas the diffusive model was marginally better at
Dx = 5, 10 and 25 m. Errors are low for all resolution models apart
from Dx = 200 m where the solution quality for both schemes is
dominated by the effect of the coarse grid resolution which is
horizontal beach simulated at Dx = 5, 10, 25, 50, 100 and 200 m spatial resolution
me step diffusive model (dashed lines); and (b) the new adaptive time step inertial
).
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not able to resolve the steep water surface slopes at the wave front.
At resolutions greater than Dx = 25 m the improvement in compu-
tation time also becomes more apparent as expected. Notably, at
Dx = 5 m, the minimum time step achieved was �360� larger for
Fig. 3. Time step evolution for simulations of wave propagations over a horizontal beach
grey lines respectively) and n = 0.03 using: (a) an adaptive time step diffusive model (d

Fig. 4. Predicted water surface elevation (z) at t = 3600 s for wave propagation over a ho
(light grey lines) and new adaptive time step inertial model (mid grey lines) for n = 0.01,
solution (solid black lines, note the changing range of the y axis).
the inertial formulation (0.785 s compared to 0.002 s) and this re-
sulted in a �220� decrease in run time. Fig. 3 shows the evolution
of the time step Dt over the simulation and shows the quadratic
reduction in the time step with decreasing grid size in the diffusive
at Dx = 5, 10, 25, 50, 100 and 200 m spatial resolution (denoted with dark to light
ashed lines); and (b) the new adaptive time step inertial model (solid lines).

rizontal beach simulated at Dx = 50 m using the adaptive time step diffusive model
0.03, 0.06 and 0.09. In each case the model is compared to the appropriate analytical
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models as a result of the Dx2 term in Eq. (5). Fig. 3 also shows that
with the diffusive model the time step continues to decrease over
the simulation as depths increase and water surface slopes reduce.
By contrast the reduction of time step with grid size in the inertial
formulation is more linear, and after an initial period of evolution
stabilizes to a near uniform value as one would expect given the
velocity in the analytical solution is fixed at 1 ms�1.

Lastly, sensitivity to friction was assessed by running the diffu-
sive and inertial models for n = 0.01, 0.03, 0.06 and 0.09 for a model
with Dx = 50 m. Results from these simulations are presented in
Fig. 4 and Table 3 and show the inertial model outperforming the
diffusive scheme at frictions above n = 0.03, but the performance
advantage switching to the diffusive scheme for n = 0.01. Why
the behaviour should change for low values of n is unknown at this
stage. One possible explanation is that for low Manning’s numbers
there is insufficient dissipation inherently in the numerical scheme
to dissipate the energy of the flow. Hence, at n = 0.01 the accelera-
tion terms in the shallow water equations start to dominate and
we get wave-like behaviour, whereas inertial LISFLOOD-FP is de-
signed for situations where there is a dominance of surface slope
and friction terms. Thus for model domains dominated by very
low surface friction a full shallow water model may give more
accurate results. Even with this divergence from the analytical
solution at n = 0.01, the RMSE for the inertial model is still only
0.05 m and this is probably acceptable for many applications as
this is less than the vertical error in typically available terrain data
(e.g. LiDAR). For both models RMSE errors increase with increasing
friction, to a maximum in these tests of 0.1 m for the inertial
scheme and 0.14 m for the diffusive scheme at n = 0.09.

Test 2: non-breaking wave run-up on a planar beach

The second test case developed by Hunter et al. (2005) consists
of solving Eq. (15) for a planar beach (i.e. where So – 0). Here no di-
rect analytical solution exists, but an accurate numerical solution
to Eq. (15) with uniform velocity can be obtained using a 4th order
Runge–Kutta scheme. Again this can be used to develop initial con-
ditions, boundary conditions and a numerical solution against
which the model can be tested. This numerical solution was imple-
mented using parameter values of u = 1 m s�1, Dx = 50 m,
So = 10�3 mm�1 and n = 0.03 m�1/3s for a simulation of duration
3600 s. Again the models are compared in terms of Root Mean
Square Error (RMSE), volume error, minimum time step during
the simulation and the total computation time. These the results
are summarised in Table 1. In this case the 50 m diffusive model
has lower RMSE than the inertial model (0.02 m compared to
0.11 m), but at a significantly greater computational cost. The min-
imum time step for the diffusive model is �250� smaller than that
for the inertial model and this translates into a simulation time
that is �61� longer. The greater speed up with the inertial model
here is due to the fact that in this case the minimum water surface
Table 3
Impact of friction on RMSE and volume error for simulations of non-breaking wave
propagation over a horizontal plane with Dx = 50 m.

Friction
(Manning’s
n)

Model Root Mean Square Error
(RMSE, in m) from analytical
solution

Volume error from
analytical solution
(%)

0.01 Diffusive 0.02 1.15
Inertial 0.05 4.98

0.03 Diffusive 0.06 1.27
Inertial 0.03 �1.25

0.06 Diffusive 0.10 1.28
Inertial 0.06 0.00

0.09 Diffusive 0.14 1.27
Inertial 0.10 0.31
slope is much smaller and hence Eq. (5) leads to smaller stable time
steps for the diffusive model. In fact the minimum time step
achieved over the simulation with the diffusive model is �20�
smaller for a planar beach compared to the horizontal case at
5 m resolution. This compares to a difference of only �1.5� for
the inertial model at the same scale. Despite its lower accuracy,
the RMSE for the inertial model is still within the typical vertical
error of high resolution floodplain topographic surveys (e.g. those
derived using airborne laser altimetry) and likely to be less than
uncertainties induced by boundary condition errors. It should also
be noted that the increase in depth for this test case is relatively
rapid compared to that which would be typical for most dynamic
floodplain inundation in lowland rivers. In reality in such situa-
tions flow evolves much more gradually and hence Test 2 actually
represents rather a stringent case. It may therefore be that for
many practical applications the minor increase in errors in pre-
dicted depth are acceptable given the large improvement in com-
putational efficiency, and that these can, like any other model
structural error, be compensated for during calibration.

In Fig. 5 we show the impact of changing model resolution on
the prediction of non-breaking wave run-up. This shows predicted
water surface elevations at t = 3600 s for the diffusive (dashed
lines) and inertial models (dotted lines) at Dx = 5, 10, 25, 50, 100
and 200 m. Here there is no impact of resolution on the model re-
sults and the only differences are generated by the choice of model
formulation. All the diffusive model runs overlay the analytical
solution, apart from where h ? 0 where the impact of grid size
can be seen. All the inertial models also over plot, but lag the
numerical solution by a short distance. This result, in combination
with the accuracy assessment in Table 4, suggests that the inertial
models are in fact tending to a subtly different numerical solution,
as noted above. The computation time for the inertial model at
Dx = 5 m is 1120� shorter than for the diffusive model as a result
of the large difference in stable time step (0.493 s compared to
0.0001 s) which in turn is a consequence of the shallow water sur-
face slope generated by this test case. Furthermore, Fig. 6 shows
that the under-prediction of wave front position is related to fric-
tion and that the effect has largely disappeared when n = 0.06, at
and above which both diffusive and inertial models perform
equally well. For the simulations at n = 0.01 there is also a
suggestion of some minor instabilities with the inertial model.
Fig. 5. Predicted water surface elevation (z) at t = 3600 s for wave propagation up a
planar beach simulated at Dx = 5, 10, 25, 50, 100 and 200 m spatial resolution
(denoted with dark to light grey lines respectively) and n = 0.03 using: (a) an
adaptive time step diffusive model (dashed lines); and (b) the new adaptive time
step inertial model (dotted lines). Each model is compared to the numerical
solution (solid black line).



Table 4
Impact of grid resolution on RMSE and volume error for simulations of non-breaking
wave run-up on a planar beach with n = 0.03.

Grid
resolution
(m)

Model Root Mean
Square
Error
(RMSE, in
m) from
analytical
solution

Volume
error
from
analytical
solution
(%)

Minimum
time step
during
simulation
(s)

Total
computation
time (min)

5 Diffusive 0.030 �0.464 0.0001 4834.8
Inertial 0.107 �1.069 0.493 4.3

10 Diffusive 0.031 �0.467 0.001 303.5
Inertial 0.107 �1.083 0.986 0.65

25 Diffusive 0.036 �0.536 0.004 9.12
Inertial 0.109 �1.148 2.465 0.07

50 Diffusive 0.040 �0.553 0.018 0.73
Inertial 0.108 �1.158 4.931 0.05

100 Diffusive 0.047 �0.590 0.072 0.1
Inertial 0.118 �1.349 9.876 0.02

200 Diffusive 0.060 �0.674 0.296 0.05
Inertial 0.127 �1.494 19.78 0.02
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Test 3: wetting and drying of a planar beach

Tests 1 and 2 have tested the ability of the new model formula-
tion to simulate wave propagation over flat and sloping flood-
plains, however correct simulation of floodplain inundation over
whole events also requires the accurate representation of flow
reversals and inundation front recession during floodplain drying.
The ability of the model to do this can be evaluated by extending
Test 2 to represent wave run-up and drying through the imple-
Fig. 6. Predicted water surface elevation (z) at t = 3600 s for wave propagation up a plan
grey lines) and new adaptive time step inertial model (mid grey lines) for n = 0.01, 0.03
solution (solid black lines, note the changing range of the y axis).
mentation of a sinusoidal wave boundary condition at x = 0 (see
for example Leendertse and Gritton, 1971; Falconer and Chen,
1991). In this case we use a wave of amplitude 4 m, period 4 h,
and So = 10�3 m m�1 for a simulation of duration 7200 s. This gives
boundary conditions comparable to those used in Test 2. As far as
the authors are aware, there is no analytical solution to this prob-
lem so in this case we simply look at differences between the dif-
fusive and inertial formulations. These are shown in Fig. 7 for a
simulation using Dx = 50 m and n = 0.03. This shows smaller differ-
ences between the inertial and diffusive formulations than for Test
2. For example, the RMSD at the end of flow advance at 3600 s is
only 0.074 m, compared to 0.11 m for Test 2 at the same time.
Overall, Fig. 7 shows wave front position during wetting and drying
simulations to differ only marginally between the two formula-
tions, and for wave shape to show noticeable differences only at
the start of flood wave recession (maximum RMSD of 0.137 m at
4500 s). Compared to Test 2 the differences between the inertial
and diffusive formulations at lower frictions are also less pro-
nounced. This is shown in Fig. 8 where we compare the output
from dynamic wetting and drying simulations at t = 1800, 3600,
5400 and 7200 s for n = 0.01, 0.03, 0.06 and 0.09 for both inertial
and diffusive models. Maximum differences occur at t = 3600 s
and 4500 s for n = 0.01 and n = 0.03, whilst at other times and for
other frictions the results are only marginally different. This sug-
gests that the differences between diffusive and inertial formula-
tions shown in Figs. 5 and 6 may be a worst case scenario and
that differences may be less marked for more realistic cases.
Fig. 8 also confirms the presence of small instabilities during the
initial phase of the simulation with the inertial model when
n = 0.01, however these die out as the simulation proceeds.
ar beach simulated at Dx = 50 m using the adaptive time step diffusive model (light
, 0.06 and 0.09. In each case the model is compared to the appropriate numerical



Fig. 7. Predicted water surface elevation (z) during wetting and drying of a planar beach simulated using Dx = 50 m and n = 0.03 for: (a) an adaptive time step diffusive model
(grey lines); and (b) the new adaptive time step inertial model (black lines).
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In terms of computational cost, Test 3 should be relatively
expensive for the diffusive model to solve as during flow reversal
and the start of wave front recession the water surface profile be-
comes near horizontal. Fig. 7 clearly shows this happening be-
tween 4500 and 5400 s. Flow reversals are a necessary feature of
any dynamic flood simulation and cause the minimum time step
in a diffusive model to become very small because of the presence
of the free surface gradient terms in Eq. (5). Hence we would ex-
pect greater computational savings with the inertial model for Test
3 than for Tests 1 or 2. This is clearly shown in Table 1 where the
inertial scheme results in a minimum time step �186� larger than
that for the diffusive model and a total simulation time that is
Fig. 8. Predicted water surface elevation (z) during wetting and drying of a planar beach
respectively) for: (a) the new adaptive time step inertial model (top four panels) and (b
�60� shorter. Fig. 9 shows the time step evolution for the diffusive
and inertial simulations for Test 3 and highlights the fact that the
minimum stable time step differs by 1–2 orders of magnitude over
the majority of the simulation. Moreover, as expected the time step
evolution for the inertial model is quasi-linear and after an initial
period of evolution stabilizes to a near uniform value over the
whole simulation.

Test 4: fine spatial resolution simulation of urban inundation

Tests 1–3 have demonstrated the numerical and computational
performance of the inertial formulation in a series of idealised
simulated using Dx = 50 m and n = 0.01, 0.03, 0.06 and 0.09 (black to light grey lines
) an adaptive time step diffusive model (bottom four panels).



Fig. 9. Time step evolution during wetting and drying of a planar beach simulated
using Dx = 50 m and n = 0.03 for: (a) an adaptive time step diffusive model (dashed
line); and (b) the new adaptive time step inertial model (solid line).

Fig. 11. Event hydrograph simulated in Test 4. The vertical dashed lines at 30 and
60 min represent instances for which model results are presented in later figures.
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cases of increasing complexity. However, the critical test of the
model is whether it is able to simulate flood propagation over com-
plex topography and reduce the long run times of storage cell
codes when applied at fine spatial resolution. To test this we used
the new inertial formulation of LISFLOOD-FP to simulate the urban
inundation test case used in Hunter et al. (2008) and Fewtrell et al.
(2008). This comprises a 1.0 � 0.4 km domain in the Greenfields
area of Glasgow, UK which has been observed to flood in response
to heavy rainfall in the small (�5 km2) upstream catchment. For
this site digital elevation data at 1 m resolution were available
from an airborne laser altimetry survey that can be used to build
high resolution inundation models. This was supplemented by
Hunter et al. (2008) with Ordnance Survey (OS) Mastermap� digi-
tal map data that defined building locations, the road network and
land-use type as vector layers. The LiDAR data acquired for this
study had already been filtered to remove vegetation and building
features to leave a ‘bare earth’ digital elevation model (DEM) with
horizontal and vertical accuracies less than 50 cm and 15 cm Root
Mean Square Error (RMSE) respectively. For hydraulic modelling
Hunter et al. (2008) aggregated the ‘bare earth’ LiDAR data to
2 m and reinserted buildings, kerbs and roads based on their loca-
tions in the digital map layer. Fig. 10 shows: (a) the road and build-
ing layout at this study site overlaid onto the surface height (z)
from the benchmark DEM and (b) a high resolution aerial photo
of the same area.
(a)

Fig. 10. The Greenfields study site (Test 4): (a) building and road topology derived from
DEM shown as a grey scale and (b) high resolution aerial photo of the study site. All map
north–south along the y axis. Dimensions are in m.
Flooding at this site is caused, at least in part, by a small (�1 m
wide) stream that enters near the north-east corner of the domain
(located at point XQ on Fig. 10a) and almost immediately enters a
culvert that runs under the entire site. Flooding has been observed
to occur here as a result of flow exceeding the capacity of the cul-
vert and spilling into the street network. Once the capacity of the
culvert is exceeded water flows along two main east–west oriented
streets before converging and ponding in low-lying areas in the
southern part of the domain.

The flow event simulated is based on a real flood that occurred
at this site on 30 July 2002. The inflow boundary condition con-
sisted of the hydrograph shown in Fig. 11, which was imposed as
a point source internal to the model domain at location XQ. This
hydrograph represents the water volume overflowing the culvert
and lasts <60 min, but as in Hunter et al. (2008) simulations were
continued for 120 min to allow water to come to rest and pond in
depressions. All external boundaries for each model were closed as
mass flux across the external boundary is negligible. Lastly, friction
was represented as in Fewtrell et al. (2008) using a single compos-
ite value of n = 0.035. This was selected based on the spatial distri-
bution of land use within the domain as determined from the OS
Mastermap� data.

Simulations were run with these data using the adaptive time
step storage cell formulation of Hunter et al. (2005) and the new
inertial formulation developed in this paper. Fig. 12 shows the pre-
dicted water depths at the end of the simulation (120 min) for both
formulations and a map of the absolute differences in water depth
(diffusive minus inertial) at this time. Overall flood extents differ
only marginally and the Root Mean Squared Difference in water
(b)

Ordnance Survey Mastermap� data with the surface height (z) from the benchmark
plots are in Cartesian coordinates where east–west is oriented along the x axis and
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depth is only 0.01 m (see Table 1). Maximum differences in water
depth are ±0.1 m, but these are very localized and over the major-
ity of the domain water depth differences are close to the RMSD.
The largest difference occurs at x = 180, y = 250 where the flood ex-
tent is slightly greater in the diffusive version and fills up a small
(�0.1 m deep) depression not flooded by the inertial model. Other
areas of difference, such as the higher predicted depths in the iner-
tial model at x = 700, y = 200 at the end of the simulation, may be a
result of the additional physics in this scheme obtained by includ-
ing the acceleration terms from the full shallow water equations.
The run time for this test is �105� shorter for the inertial model
(1.47 min compared to 155 min for the diffusive model) which is
in line with theoretical expectations. The total computation time
for the inertial model also compares favourably with the run times
reported for other classes of model applied at this test site. These
include Hunter et al. (2008) who report run times of around
60 min for various structured grid, full shallow water models,
Schubert et al. (2008) who report a �18 min run time for a 2 m res-
Fig. 12. Predicted water depths for at the end of the simulation for Test 4 (120 min) usin
the new adaptive time step inertial model. Panel (c) shows the difference in predicted w
olution unstructured grid, full shallow water model and Lamb et al.
(2009) who report a �9 min run time for a structured grid, adap-
tive time step diffusive model (JFLOW) run on a massively parallel
Graphics Processor Unit (GPU). Whilst these are not controlled
tests conducted with identical processors and compilers (for exam-
ple the processors used for the simulations reported by Hunter
et al. are now relatively old), these results do suggest that the
new inertial formulation would be faster for this case than any pre-
viously applied code. This is a significant advance on diffusive stor-
age cell models which were shown by Hunter et al. (2008) to be an
order of magnitude slower than full shallow water models at this
resolution because of the quadratic dependency on grid size in
Eq. (5). Moreover, when one couples the speed up achieved here
with the 5–6� speed up in LISFLOOD-FP run times achieved by
Neal et al. (2009) using Open-MP parallelization on an 8 core
processor, the potential for a �600� reduction in run times for
this test case (i.e. down to �0.25 min) becomes a realistic
expectation.
g a grid resolution of Dx = 2 m for: (a) an adaptive time step diffusive mode and (b)
ater depths (diffusive minus inertial) between (a) and (b).
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Discussion and conclusions

The results outlined in the preceding section show the new
inertial formulation of the shallow water equations developed in
this paper to produce flow predictions that compare favourably
with analytical solutions for non-breaking wave propagation over
horizontal and planar beaches and to the results from an adaptive
time step diffusive storage cell code. Like the diffusive model, the
inertial code is relatively insensitive to grid resolution and displays
an intuitively correct response to changing friction.

The inertial code performs slightly better than the diffusive
code for a horizontal beach and slightly worse for a planar beach
when compared to the analytical solution. However for either code
the Root Mean Squared Error is always less than the typical vertical
error (�0.1 m) in high resolution terrain data (such as airborne la-
ser altimetry or LiDAR) used for inundation modelling. Water
depth errors are independent of grid scale but do vary with friction,
with the inertial model tending to perform worse than the diffu-
sive model when n = 0.01. Differences between the inertial and dif-
fusive codes become less marked for more realistic cases involving
dynamic wetting and drying and for higher frictions, and for a real
test case involving the fine spatial resolution simulation of flow in
a topographically complex urban area the Root Mean Squared Dif-
ference is �1 cm. Whilst water depths predicted by the new for-
mulation are similar to benchmark solutions, these results are
achieved at a significantly reduced computational cost because
the minimum stable time step scales with Dx, rather than with
(1/Dx)2 as would be the case for a purely diffusive scheme. The ex-
act speed up over a diffusive code will depend on grid resolution
and water surface gradients within the flow domain but from the-
oretical considerations is likely to be 1–3 orders of magnitude. The
maximum speed up achieved for the tests reported here is 1120�
and as a result the inertial code will most likely be faster than
either diffusive or full shallow water models at any given spatial
resolution. Moreover, as the explicit equation we here describe is
relatively easy to code it should be simple to parallelize using
Open-MP techniques (e.g. Neal et al., 2009) or software tools such
as NVIDIA’s Kuda which allow models to run on massively parallel
GPU cards (e.g. Lamb et al., 2009). This will pave the way to further
substantial reductions in run times and make possible a whole
range of new applications of hydraulic models. These could include
whole city risk analyses at the native spatial resolution of LiDAR
data (i.e. 0.25–1 m), real time two-dimensional inundation fore-
casting using ensemble data assimilation, multi-year simulations
of flows at continental scales (e.g. the Amazon River basin, Wilson
et al., 2007), and explorations of model uncertainty using Monte
Carlo analyses with orders of magnitude more realisations than
has hitherto been possible.

Care should be taken when using the new inertial formulation
for domains where large areas of low friction land use dominate
(i.e. where n is equal to �0.01), as here predicted water depth er-
rors increase and small instabilities can creep into the solution.
The instability seen at low Manning’s n results from the hybrid nat-
ure of the model, and shortcomings in the stability criteria applied.
The Courant–Friedrichs–Lewy condition is more usually applied to
advective problems where upwinding is applied, and thus may not
be strictly applicable to the centred difference approach adopted
here. Hunter et al. (2005) showed that without the inertia terms,
stable time step is proportional to n (Eq. (5)), and hence will be dri-
ven to zero if the friction is neglected. Friction is acting to stabilise
the scheme in this respect, with stability increased further by addi-
tion of the inertia term as described in this paper. A rigorous anal-
ysis of the stability of a non-linear model including both friction
and wave propagation behaviour will be complex, if not impossi-
ble, but the analysis presented here is a pragmatic approach taking
into account the limiting behaviours understood by the Courant–
Friedrichs–Lewy condition and the approach of Hunter et al.
(2005). This approach has been shown to be reasonable through
the test cases presented in this paper, for models of typical natural
floodplains. While the absence of a rigorous analysis of stability is a
drawback compared to other numerical schemes, in some circum-
stances this is outweighed by the advantages of simplicity, which
make implementation on parallel and non-standard architectures
as discussed above far easier. However, for model domains charac-
terised by very low surface friction a full shallow water model may
give more accurate results.

Future research should test the new inertial formulation for fur-
ther test cases and seek to benchmark model performance (in
terms of both predictions and computational times) against a vari-
ety of other model types in controlled experiments such as those
described by Hunter et al. (2008). Further work should also be con-
ducted to try to improve stability of the new equation set at low
friction or examine the possibility of developing models capable
of using different physical formulations in different parts of the
model domain depending on changing flow dynamics. A spatially
varying time step may also improve model efficiency, although
previous work on this for 1D models shows that the potential
speed up is reduced significantly by other computational over-
heads associated with changing the time step for different parts
of the model (Wright et al., 2003). Despite this need for ongoing re-
search, this paper has demonstrated the utility of the new inertial
formulation against a series of stringent tests of increasing com-
plexity. The new equations are therefore likely to find widespread
application in many types of flood inundation modelling and
should provide a useful additional tool, alongside more established
model formulations, for a variety flood risk management studies.
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