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ESTIMATION OF EARTHQUAKE HAZARD PARAMETERS FROM
INCOMPLETE DATA FILES. PART II. INCORPORATION OF
MAGNITUDE HETEROGENEITY

By A, Kuxo aNp M., A. SELLEVOLL

ABSTRACT

The maximum llkelihood estimation of earthquake hazard parameters (maxi-
mum reglonal magnltude m,,,,, activity rate A, and the Gutenberg - Richter
parameter b) from Incomplete data files Is extended to the case of uncertaln
magnitude values. Two models of uncertainty are considered. In the first one,
earthquake magnltude is specified by two values, the lower and the upper
magnitude limit. It is assumed that such an interval contains the real, unknown
magnitude. In the second madel, uncertainty of earthquake magnltude Is de-
fined in the same way as it was proposed by Tintl and Mulargla (1985): the
departure of the observed (apparent) magnitude from the true, unknown value s
distributed normatly. The proposed approach allows the combination of catalog
parts of different quaiity, e.g., those whore the assessment of magnitude Is
questionable and those with magnitudes determined very precisely.

As an lllustration, the proposed procedures are applied for the estimation of
selsmicity parameters in western Norway with adjacent sea areas.

INTRODUCTION

In the first part of our study (Kijko and Sellevoll, 1989: henceforth referred to
ag K81), the maximum likelihood estimation of basic earthquake hazard param-
eters {maximum regional magnitude M. earthquake activity rate A, and the
b parameter in the Gutenberg-Richter relation) was proposed. The issue ad-
dressed in KS1 is how to utilize large historical events and recent complete
observations. In addition, the K81 technique permits several thresholds of
completeness as well as gaps in registrations.

However, despite its flexibility, the KS1 approach has an important defi-
ciency: it is not able handle magnitude uncertainties. Earthquake magnitudes
are never known exactly. The older (macroseismic) earthquake data recovered
from historical records are affected by large uncertainties, due in part to (e.g.,
Ambraseys et al., 1983; Bender, 1987; Tinti et al., 1987) shortage of documenta-
tion, inaccuracy and misunderstanding in the description of the damages, and
conversion of macroseismic information to the corresponding magnitude value.

Even instrumentally determined earthquake magnitudes can be very uncer-
tain. Conversion of one type of magnitudes to the single measure common to the
whole span of the catalog requires conversion by means of empirical relations.
As was pointed out by Chung and Bernreuter (1981), such a procedure is not
necessarily valid. In addition, change of characteristics of seismic BENsors can
cause systematic error in magnitude conversion (see, e.g., the case of magnitude
conversion for eastern and western United States, Chung and Bernreuter, 1981;
Nuttli and Herrmann, 1982). Correspondingly, a catalog that contains macro-
seismic and complete data sets is heterogeneous in respect to magnitude deter-
mination and requires appropriate handling techniques,

In this paper, we shall present two original approaches to the problem of
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seismic hazard evaluation and see that incorporation of earthquake magnitude
uncertainty entails reconsideration of the estimate technique proposed in KS1.

" Two MODELS 0F MAGNITUDE UNCERTAINTY

- Hard Bounds Model. Uncertainty of earthquake magnitude is specified by
two values: x and %. x is the lower and X is the upper magnitude limit,
Introducing an apparent magnitude value equal to x = 0.5(x + %), the lower
and the upper magnitude limits are equal to x = x - § and % = x + 6, where &
is the measure of the magnitude uncertainty equal to § = 0.5(% — x) (Fig. la).

Soft Bounds Model, The second model is based on the concept of apparent
magnitude, introduced by Tinti and Mulargia (1985). The apparent magnitude

magniiude uncertainty .
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Fi6. 1. An illustration of data that can be used to obtain basic seismic hazard parameters by the
proposed procedures. Qur approach permits the combination of the largest earthquakes with
complete data and variable threshold magnitudes, It makes possible to use the largest known
historical earthquake (X, .) that ocourred before our catalog begins. It also accepts 5apa" (T
when records are migsing or seismic networks were not in operation. (a) “Hard bounds” model of
earthquake magnitude uncertainty. Magnitude of each earthquake is specified by two values: the
lower and the upper maqnitude limit. It is assumed that such an interval containe the resl
unknown magnitude. (b) “Soft bounds” model of earthquake magnitude. lincertainty. Following
Tinti and Mulargia (1985), it is assumed that the observed magnitude is the true magnitude
distorted by a random error ¢. ¢ is free from aystematic errors and follows a Gaussian distribution
with zero mean and standard deviation ¢.
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of an earthquake is defined a8 the “observed” magnitude; which differs from the
“real” magnitude owing to the random error e, It is assumed that ¢ follows a
Gaussian distribution with zero mean and standard deviation ¢ (Fig. 1b).

The names of our models are ‘given after Backus (1988), who introduced
“hard” and “soft” bounds of prior information in inversion of geophysical
problems. The choice of the model to work with depends on our knowledge of
data collection procedure and catalog preparation. It is clear that such a
-decision contains a certain amount of subjective judgment.

Assuming the Poisson occurrence of earthquakes with activity rate N\ and
validity of the doubly truncated Gutenberg-Richter magnitude-frequency rela-
tion, the density and cumulative magnitude distributions can be written respec-
tively as (e.g., Page, 1968; Cosentino et al., 1977)

flx|m) =BA(2)/(A; - Ay), (1)
F(x|m) = [ Ay~ A(2)]/( A, - 4,), (2)

where A, = exp(—fm), A, = exp(—8m._,,,), A(x) = exp(—8x), and magnitude
x belongs to the domain (m, m,,_.}). m is the threshold magnitude. § is related
to Gutenberg-Richter parameter & through the relation B =2>5In (10). The
desired seismicity parameters are § = (8, \) and Mg

The probability that in a time interval ¢ either no earthquake oceurs or all
occurring earthquakes have apparent magnitude not exceeding x may be
expressed as exp{ —N(mg)H1l — F(x| my)l} (e.g., Benjamin and Cornell, 1970;
Gan and Tung, 1983), where A(m,) = [N1 - F(mg| m,,;,)) and m, is the -
threshold magnitude for the extreme part of the catalog (moz m,;) m,,,
plays the role of the “total” threshold magnitude and has rather formal
character. The only cendition in the choice of its value is that Mp;, cannot
exceed the threshold magnitude of any part of the catalog, extreme as well as
complete, Hence, the probability distribution function of the strongest earth-
quake during the time interval ¢, conditional on the earthquake existence, is
given by :
exp{ —NMm,)t{1 - F(x| my)]} — exp[ — M mg)¢]

G| mo, t). - 1 - exp[-Mmy)t]. - @)

In most practical situations, we deal with &nough high activity rate Mm,) that
the term expl — A(my)¢] can therefore be ignored.

Let us discuss the first model of magnitude uncertainty and build the likeli-
hood function of desired seismicity parameters 6. If the uncertainty of earth-
quake magnitude ig specified by the lower and upper magnitude limits x, %, the
density probability function of the apparent magnitude becomes the convolution
of magnitude distribution (1) and uniform distribution in the range { ~ §, 8),
where § denotes the interval of magnitude uncertainty. After simplo calcula-
tions, the density probability function of the apparent magnitude for the
discussed uncertainty model is : :

. F(x +5), m-8sx<m+s, ,
Hz|m,8) = (28) N F(x+8) ~ F(x=3), m+bésx< Mgz = 8, (4)
11~ F(x-~3), Moy = 6 <% S Mgy + 8,
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or equivalently _ P S | . o i

Meimd) = Csma g, )

where the correction function Cy(x| m,d) is given ‘by -

{exp[ B(x —Im-)]_’_.- exp(;-ﬁé_)}/zﬁ&,_ form-6% x <m+ 8,
Crs B . for m+88x <My, ~5, , (6)
{exp(B8) - exp[_—ﬁ(mm“ — x)]}/288, for my,, —d<x S My, +5

where ¢, = fexp(88) ~ exp(~B8)1/288.

It is clear that apparent distribution (5) progresslvely dev1ates from the
classical Gutenberg-Richter one as magnitude uncertainty § increases. In the
larger part of the magnitude domain {m + §, m,,,, — 8}, the apparent magni-
tude distribution is proportional to “true” distribution (1). Since for any posi-
tive magnitude uncertainty &, the correction factor ¢y > 1, the apparent magni-
tude distribution (5) within the interval {m + 4, mmx — &) overestimates the
number of earthquakes.

The further application of apparent magmtude (4) requires its renormaliza-
tion. In our original model (1), there is a sudden -transition between the
magnitude range where we are capable of recording all earthquakes (for x z m)
and the range (for x < m) where no earthquake can be recorded., Such an
assumption seems to be unrealistic, since in practice the trangition occurs
gradually. Let us agsume therefore that the cutoff magnitude m is chosen in
such a way that all earthquakes with “true” magnitude in the range {(m — §, m}
and with apparent magnitude not smaller than m are recorded. Then, the
normalized-density and cumulative probability functions of the apparent magni-
tude for hard bound model become, respectively,

?(x?-rﬁ, 8) = (c;4; ~ A5) 7"

c/BA(x), MEX< Mgy — O

[A(x - 8) = A5)/(28), My —0sx<m,, +6 (7)
and
F(x|m,8) = (c;Aq - A" |
cf'[Al——A(x)],, . . msa< Mppoe — 8,
[Al - A(mmax - a)] - A2(x - My, + 5)/(25)
~[A(%) = A(Mpoy = 8)]exp(B0)/(B8), = Mypppy— SSXS My, +8.
. .. o (8)

The application of standard maximum likelihood technique at such a stage
Jeads to-correct evaluation of the. parameter 8 only. The estimated activity rate
xwill be.gtill “‘apparent.” In order to obtain the “true’ A evaluation, respectwe
corrections. must be introduced., -
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The assumption on the restricted range of earthquake magnitude to the
interval {(m, m,,,,) and the application of the technique proposed by Bender
(1987), Appendix B) leads to the following relation between the apparent
act1v1ty rate A(x) and the “true” rate Mx).

X(x) = N2)Cy(x| m,38), RO

where Cy(x{m,$) is defined by relation (6) and m 5 x 5 m,,,,. Taking into
account our assumption regarding the nature of lower end of the magmtude
range m, relation (9) takes the followmg form:

Cry : . . me=x<m
x(;":) = }\(x) BXP(BS) ""exP["ﬁ(mmax - x)] S m
265 7 T Times

max"“s

(10)

-d<x g m,,,.

From relation (3) it follows that g(x|mq, t,5), the density probability func-
tion of the strongest earthquake within a perlod ¢ w1th the apparent magmtude '
x and uncertamty 8,18

)\(mo)tf'(x| myg, 8)expf — )\(mo [1 - F‘(a:|mo, 8)]/[1 - GXP( )\(mo)t]

After introducing probability (11), the likelihood functlon of 8, followmg from
the extreme part of the catalog, becomes

Ly(0 | x,) = const H g(xml'mo,-to,-} 500- (12)

In relation (12) for each earthquake i, from the first (extreme) part of the.
catalog, the mput deta are the apparent magnitude x, of the strongest earth.
quake occurring during the time interval- t; and the value of its magnitude
uncertainty 8. i=1,...,ny, and nr, is the number of earthquakes in the
extreme part of the catalog The time mtervals {, are calculated according to
the simple formula:

7y =~ ¢o1> fori=1
b= T;~ T;_q, ' fDl""i=2’--—)n0“'1 ' .(13)
fo2 = Tag-1, for i= n,,

where ¢, and £, mean the beginning and the end of the extreme part of the
catalog, and 7,, ..., 7,, are the extreme sarthquake origin times. For compact-
ness and convenience of notation, magnitudes and its uncertainties are grouped
into Xy = | %o;, 8¢;(, i = 1,.... no. From the same reason, time intervals ¢; are
grouped into t = (¢,,... no) Const is a normalization factor independent of 8.

Let us assume that the second, complete part of the catalog can be divided
into s subcatalogs (Fig. 1). Each of them has its span 7, and is complete
starting from the known magnitude m,. Let for each subcatalog Xy =% 6]
be apparent magnitude and its uncertamty with j=1,..., n;, where n; de-
notes the number of earthquakes in each complete subcatalog, andi=1,...,8.

If the size of seismic events is independent of their number, the hk_ellho'odl
function of 8, L/(f#|x,), is the product of two functions Ly(8|x;) and Ly(N|xyp)r
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Relation (7) generates Lg(8)x;) of the following form -
Lﬂ(lei) 1= conSt.ﬁlf(xiﬂ m,,aij). (14)
J-

The assumption ‘that the number of earthquakes per unit time is a Poisson
random variable gives the similar form of L,(A\|x;) as in K8l conit
expl — A(m ), IMm )¢, where const is a normalizing factor, the apparent
activity rate is defined by relation (10), and Mm,) = M1 - F(m,| m,;,)]- Rela-
tions (2), (7) and (8) and L,(A|x ) for i=1,...s, define the likelihood function
of the parameters sought for each complete subcatalog. Finally, the joint
likelihood function based on all data is given by .

L Ix) = TLL(0]x.)- )

A certain approximation of likelihood function (15) for the hard bounds
model, including analytical forms of the derivatives dL(6|x)/98, L0 |x)/ 0N,
analysia of main implications and discussion of special cases can be found in our
recent 'paper (Kijko and Sellevoll, 1990). = _ o

Let us now turn our attentiori to the soft bounds model of magrnitude uncer-
tainty, introduced by Tinti and Mulargia (1986). If the error of magnitude
determination is assumed to'be normally distributed with a standard deviation
a, the density and cumulative probability functions of the apparent magnitude
become respectively: o R '-

f(wimao) = BA(=)/(Ar - AR)C(xIm, o), (16)
F(x)m, o) = [ A, - A(x)]/(A; - A2)D,(x| m, o), (17)
where K

L
LF

o geimn - o ) e ZE a)

BRI DN ARE.SLL1 A PO WL
SeElm o) =AM Ve T 2[97 5o )7
B _.420;(m|.jsn,a',)"A(':éa]'/z[,Al—A(x)],-

erf(*) is the error-function (Abramowitz and Stegun, 1970), v = B¢/ v2, and x

issanlimited!from both ends: - T : - s
Tt shouldrbe-noticed  that for the magnitude interval (m, m,,.), apporent

magnitude:distributions -(16) -and (17) can ‘be expressed by true. magnitude
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distributions (1) and (2) in simple forms:

flx| m, o) = f(x| m}C,{x)m, o), (18)
F(x|m,0) = F{x|m)D,(x}m,0). - {19)

It may be verified that, for x inside the interval (m, m,,,}, the correction.

function C,(x|m, o) may be well approximated by a constant equal to oxp(y?),
and . o ' :

limC, (x| m'l, o) =1,

20
limD, (x| m, ¢} = 1. (20)

Relations (20) are in full agresment with our intuitive expectations: the less -
the random errors perturb the real magnitude, the more the apparent magni-
tude distributions f(x| m, o).and F(x{ m, ¢) appear to be correspond to f(x | m)
and F(x|m). It is interesting to notice that the apparent magnitude distribu-
tions (16) and (17) may assume values even outside of the original domain of
{m, Mo From a formal point of view, apparent magnitudes range between
koo, - oo ' . _ R .
The further application of distributions (168) and (17) requires additional
renormalizations. If m is the lowest magnitude at and above which the gbgerva-
tions are complete, then its normalized density probability function f(x | m, o)
is zero up to m and is equal to f(x}m, a)/[1 — F(m|m, o)) for x z m. In a
similar way, the normalized cumulative probability function of apparent magni-
tude is8 F(x|m, ¢) = [F(x|m, ¢) ~ F(m}|m, &)/l -~ F(m{m, e)).. In., fact,
flx | m, ¢) and F(x|m, o) are conditional distributions of x given that.x = m.

Finally, assuming that the model in which density function (1) vanishes
below the cutoff magnitude m is unrealistic, and in practice the transition

occurs gradually, the relation between the apparent activity rate N x) and the
“true” one takes the form . ; .

A %) =>\(x)e;[1 +erf(m—”:;#-§—£——af +7)]. (21)

The likelihood function of the parameter ¢ is designed in the similar way as
for the hard bounds model. For an extreme part of the catalog, for each
earthquake i, two input values are required: the apparent magnitude xq; of the
strongest earthquake occurring during the time interval ¢, and the value of its
standard deviation oy, (i = 1,...,n,). For compactness of notation, earthquake
magnitudes and their standard deviations are denoted as x,, (x, = | %ou %il»
i=1,...,ny). For the same reason, time intervals t; are grouped into t =
(23, .. ., tyo). Similarly, let for each complete part of the catalog x, = | x; 5 Oz 5
(/=1,...,n) to denote the apparent magnitude values and their standard
deviations. ' _

In order to estimate the parameters ¢ = (8, ), the maximum likelihood
procedure is used. The maximum likelihood estimate & is the value of § that
maximizes likelihood function (8).  Qur likelihood function does:not provide a
satisfactory evaluation of m,,,,. Following Kijko and Dessokey (1987) and; the
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K81 approach, the condition that the largest observed magnitude X, is equal

to E;'XPECT{ Zpmax |- 1), i.e., the largest expected magnitude in the span of the

catalog” T, often provides satlsfactory evaluation of m,,,. The formula for
EXPECT{x,,,|T) is given by Kijko (1988) and K81.

i AN ExaMPLE: Seismic HAZARD PARAMETERS FOR THE WES’I‘ERN Norway
= CoasraL AREA

. As an 111ustrat1on ‘the described estimation procedures have been used to
estimate seismicity parameters for western Norway and the adjacent sea area
(Fig. 2), limited by 58° to 64°N, 4° to 8°E. The data used originate from Bath
(1966), Muir Wood et al., (1989), and Sellevoll et al., (1982) with an appendix of
]December 1989, The catalog compiled has been d1v1ded into four parts. The first
part contains six of the largest earthquakes for 1 January 1831 to 31 December
1890 studied by Muir Wood' et «l. (1989). The second part (from 1 January 1891
to 31 December 1950) includes data from Bath’s (1956) catalog for Fennoscan-
dian earthquakes for the years 1891 to 1950. The third part (from 1 January
1951 to 31 December 1979) and fourth part (from 1 January 1980 to 31
December 1989) include data presented by Sellevoll et al. (1982) with appendix
of December 1989,

Before 1891, the macroseismic data are generally much less complete than
during the. perlod from 1891 to 1960, which is a time period characterized by
falrly complete macroseismic observations, but with instrumental data avail-
able in a few cages. The systematic collection of macroseismic data by help of
questionnaires began in N orway in 1887 and has continued without break gince
then, Thé ‘establishment of a seismic network for Scandinavia started about
1950, Englneermg work in the North Sea for oil productlon required much more
detailed. mformatmn than available and local seismic network were established
in westerti’ ‘Notrway during the 1980s in order to meet these requirements,

- The macroseismic magnitudes for the period from 1951 to 1989 have been
determined in such a way as to obtain best agreement with Bath’s catalog, for
the period. from 1891 to 1950. The M, magnitudes calculated by Muir Wood
et al. (1989) have been converted to our macroseismic magnitudes by establish-
ing a relationship between their and our catalog from 1891 to 1987 (51 pairs of
magnitudes). Table 1 shows the first part of the catalog. The second part
containg the complete catalog of n, = 40 earthquakes with threshold magnitude
m,; = 3.8. The third part contains n, = 87 events with threshold magnitude

my = 3.6. The last part containg ny = 27 earthquakes completed from mg = 3.0.
Based on experience of our earthquake catalog preparation, it was assumed that
for each data set hard bounds of magnitude uncertainty are equal to 8, = 0.8,
8, = 0.25, 5, = 0.2, and 6, = 0.15.

We did not investigate theoretically the relation between the hard bounds
model with given parameters and the parameters of a corresponding soft bounds
model. It is clear that ¢ for the soft bounds model depends on the subjective
choice of confidence level. Fortunately, as we shall see, estimated hazard
parameters are not very semsitive to changes in the magnitude uncertainty
characteristics 4 and o as long they remain in the reasonable ranges. Let us
illustrate this with two examples. .

In the first example, let us assume that we underestimate errors in magni-
tude determination and for some cases the “true” magnitude X lies outside the
specified interval {x, ¥). If no additional information is available we could
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Earthquakes felt in Western Norway (1891 - 1989)
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Fig. 2. Seismicity map of western Norway and adjacent area for the pé_r.iod from 1891 -to 198D.
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. TABLE 1

. Maximum MACROSEISMIC MAGNITUDES OF
~ BarTHQUaKES FELT IN WESTERN NORWAY AND
ADJACGENT AREA FOR THE PERIOD FROM 01/01/1831
e To 12/31/1890% - :

- l\ Ev:qnt . Date Magnitude
1 08-17 1834 5.2
2 09-03 1834 5.3
3 06-07 1865 5.2
4 08-13 1883 4.3
5 09-05 1886 4.2
6 10-25 1886 5.1

*After Muir Wood et al. (1989).

construct a corresponding soft bound model of observed magnitude with mean
located at the center of the interval {x, X} and subjectively choose the standard
deviation o of soft bound model equal to the hard bound magnitude uncertainty
3. This choice of o corresponds to a confidence level of 0.683.

In the second example, we-are “almost sure” that the true magnitude X lies
within our interval {z, ¥}. Here we subjectively choose a confidence level of
0.997, which requires that the soft bound model’s o = §/3.

The results of applying the two approaches based on hard bounds and soft
bounds uncertainty models to our data are given in Table 3. For comparison, in
the last column the results of the “standard” approach (KS1), where magnitude
errors are not taken into account, are also included. Return periods estimated
by means of the hard bounds model, the soft bounds model with ¢ = § and the
“standard approach” are shown in Figure 3. The case with small magnitude
uncertainties (¢ = §/3) is not included. According to our experience, this case
does not reflect reality; the uncertainties with o = 6/3 are too small to be
correct..

The obtained results (Fig. 3, Table 3) indicate that the magnitude uncer-
tainty, although very important in many respects, does not play a significant
role in seismic hazard evaluation as long as it remains within a physically
defensible range. The three curves of mean return periods presented in Figure
3, although calculated by three different procedures, do not significantly differ.

Significant difference in return period evaluation was observed particularly
for large soft bounds magnitude uncertainties. For example, Table 3, where
¢ = 8, gives a calculated return period of 9.6 years at magnitude 5 for the soft
bounds procedure. Doubling the uncertainty for this procedure (¢ = 23) yields a
calculated return period of 10.8 years, an increase of 12,5%. On the other hand,
the hard bounds procedure is much less sensitive to the assumed large magni-
tude uncertainty, At magnitude 5, Table 3 shows a return period of 9.1 years for
the hard bounds procedure. Doubling & gives a return period of 9.7 years, a
modest increase.

The fact that the hard bounds procedure is much less sensitive to the assumed
magnitude uncertainty can be readily explained. In practice, the deviation of
the two discussed models from the “standard” one (KS1) is determined by the
value of the correction factors c¢,. For the hard bounds model ¢, is equal to
[exp(8) — exp(—B5)]/(285), and for the soft bounds model ¢, = exp(B%02/2). By
definition, for the “standard” approach ¢,= 1, Figure 4 shows the value of the
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correction factors ¢, as a function of magnitude uncertainty: & for the hard
bounds and o for the soft bounds model. The calculations were performed for
8 = 2.0. For the both discussed models, for a relatively small magnitude uncer-
tainty (up to = 0.2) the correction factors c, do not differ significantly from
unity and the presence of errors can be ignored. The deviation of ¢, factors from
unity increases when magnitude uncertainty increases. In addition, the value of
¢, for the soft bounds model increases much faster then the respective value for
the hard bounds model. Such facts have an obvious physical meaning: large
magnitude errors play an important role in the process of seismic hazard

TABLE 2
SumMMaRryY oF THE CoMPLETE PARTS OF CATALOG

Magnitude Fraquency

Complete Part No. 1
Time Period: 01/01/1891 to 12/31/1950 _
Number of Earthquakes:; 40 '
Threshold Magnitude: 3.8.

3.8

L
o
e BD O GO ke BD e B OBD T A O RS

Complete Part No. 2
Time Period: 01/01/19561 to 12/31/1879
Number of Earthquakes: 37
Threshold Megnitude: 3.6

3.6

.
£
b=t BD b et b BD O DD BD OO e = BD b R 00 o
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TABLE 2
(Continued)

Magnitude Frequency

Complete Part No. 3
Time Period: 01/01/1880 to 12/31,/1989
Number of Earthquakes: 27
Threshold Magnitude: 3.0

3.0
©. 3.2
3.3
35
3.8
3.7
8.9

-9
ol
o b B BB RD D e DD O

TABLE 3

ESTIMATION OF EART'HQUAKE HaZarp PARAMETERS AND RETURN
PERIODS BY THE THREE DESCRIBED PROCEDURES

Return Perioda {Yr)

Magnitude
Hard Bound Soft Bound Errare
Model Model Ignorad

¢4 = 1.28, (# = 1.82, {f =129,

haq = 8.38, fao = 8.61, fgo = 8.48,

Magnitude Mgy = 57T By = 8.7 Mpay = B.TT)

3.0 0.4 0.4 0.4
4.0 1.8 1.8 1.7
4.5 : 3.7 3.9 3.7
50 9.1 2.6 9.0
5.2 14.3 ’ 15.1 14.1
5.4 26.4 . 26.9 25.0
6.8 83.3 v 87.3 82.5
6.7 164 2 174.9 162.1

Caleulations performed for the “hard bounds’ magnitude uncer-
tainties: §; = 0.8, §, = 0.26, 6, = 0.2, and §; = 0.15. Results of
application of the same data with the “soft bounds” magnitude
uncertainties equal to ¢ = 0.3, 0y = 0.25, a5 = 0.2, and oy = 0.15.
Results of application of the “standard approach,” when magnitude
uneertainty is not taken into account.

parameters evaluation, and the soft bounds model is much more sensitive to the
large magnitude errors than the hard bounds model.

In order to examine how general our conclusions are, the approaches de-
scribed above have been applled to the number of synthetic catalogs and to two
real. data sets. These comprise a. catalog of events in Vrancea, Romania,
extending from 984 to 1986, and a set of the largest events in Egypt between
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600 B.C. to.A.D. 1989. The main characteristice of the obtained results are
similar, although the data sets correspond to areas with different patterns of
seismicity and 'vary in number of évents and time span. In general, the
evaluation. of hazard parameters is stable and the resuits are in concordance
with observational data. If insignificant magnitude errors are used, the three
procedures yeturn the values that are: close to each other, although they were
computed using entirely different techniques.

It is difficult to spéak of the supenonty of any of the three procedures
discussed, The choi¢e of one of them is largely subjective, depending on personal
judgmeént regarding the nature of available earthquake data. For really large
magnitude.errors the standard procedure; which ignores them, gives always too
high values of hazard. In terms of return periods, it produces return periods
that are too short. In this:-sense the standard procedure could be characterized
as a conservatwe or pessimistic one.

REMARKS AND CONCLUSIONS

A procedure for the use of incomplete seismological data is here extended to
take account of magnitude uncertainty.

Two different models of earthquake magnitude unecertainty are descrlbed In
the first model, the uncertainty of earthquake magnitude is determined by hard
bounds. It is assumes that such an interval contains the real unknown magni-
tude. In the second soft bound model, the real unknown magnitude differs from
the observed magnitude by a Gaussian random error with zero mean and known
standard deviations.

Two proceduies, based on the two uncertainty models, as well as the standard
procedure, were applied to a set of earthquake data felt and recorded in western
Norway and adjacent sea area during the last 160 years. The obtained results
suggest that any assumption regarding the nature of errors of earthquake
magnitude distribution is not significant. Both procedures, for a reasonable
range of the assumed magnitude uncertainty, give comparable results. A disre-
gard of. Blgnificant magnitude uncertainties leads to an overestimation of
seismic hazard. -

The described procedures are especially useful for seismic hazard evaluation
based on incomplete historical data, when magnitude uncertainty is much
greater than that from instrumental data. '

A computer program was used tocalculate the values in Table 3. It is written
in FORTRAN 77 for IBM PC and compatible computers and can be provided if a
blank 5.25" floppy disk is sent to one of the authors.
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