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ESTIMATION OF EARTHQUAKE HAZARD PARAMETERS FROM
INCOMPLETE DATA FILES. PART I. UTILIZATION OF EXTREME
AND COMPLETE CATALOGS WITH DIFFERENT THRESHOLD
MAGNITUDES

By A. Kuko A_ND. M. A. SELLEVOLL

ABSTRACT

The maximum likeliheod estimaticn ofig%i;;nnquake hazard parameters {maxi-
mum regional magnitude, m,,a., earthqua’_fé“adlivity rate A, and b parameter in
~ the Gutenberg-Richier oquation} is extended to the case of mixed data containing
~ large historical events and recent complete observations. The method accepts
variable quality of complete data in dlffe‘l;,én‘l parts of a catalog with differant
threshold magnitude values. As an illustration, the procedure is applied for the

estimation of seismicity parameters in the ares of Calabria and eastern Sicily.

INTRODUCTION

The available earthquake catalogs -usually contain two types of information:
macroseismic observations of major seismic events that occurred over a period of a
few hundred years, and complete instrumental data for relatively short periods of
time (the last 50 years at the most). The methods which are generally used for the
estimation of seismic activity parameters (parameter b in the Gutenberg-Richter
equation, earthquake activity note A, and Muax) are not suitable for this type of
data. Because of incompleteness of the macroseismic part of a catalog or, more
exactly, because of difficulties in estimating its growing incompleteness in earlior
times, the highly efficient methods of Weichert (1980) or Dong et al. (1984a, b) are
not always applicable,

The most suitable methods for analyzing the macroseismic part of the catalog are
extreme distributions, extended to allow for varying time intervals from which
maximum magnitudes are selected. Assuming that this part of the catalog contains
only the largest seismic events, and having the possibility of dividing the catalog
into time intervals of different lengths, we can in practice analyze all the macro-
seismic data. Of course, we can also take into account the other, complete part of
the catalog by selecting from it the largest events which occurred in relatively short
time intervals (usually of 1 year duration). This method of incorporating the
incomplete part of the catalog into the analysis is very far from being optimum, as
a great deal of information contained in small shocks is wasted, L

Another method for estimating the seismic activity parameters is to reject the
macroseismic observations that are incomplete and to use any standard method for
the data from the other, complete part of the catalog. It is obvious that this
procedure is also highly ineffective, as the quantitative.gssessment of recurrence of
strong seismic events based on observations over a short'period of time is burdened
with large errors (Knopoff and Kagan, 1877; Dong et al.,"1984a),

This paper presents a different approach, making- it possible to combine the
information contained in the macroseismic part of the catalog (strong events) with
that contained in the more complete younger paxts, of the catalog (Fig. 1).

The procedure is applied for the estimation of the seismicity parameters in the
area of Calabria and eastern Sicily.
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Fic. 1. An illuatration of the data, which can be used to obtain basic ssismic hazard parameters by
the proposed procedure. Our approach permits the combination of the largest earthguakes with complete
data of variable threshold magnitudes. It makes possible the application of the largest known historical
earthquake X.... that occurred before our catalog begins; it also accepts “gaps” (as Ty; ot, for example,
when records are missing or seismic networks were not in operation).

EXTREME MAGNITUDE DISTRIBUTION AS APPLIED TO THE MACROSEISMIC
PART OF THE CATALOG

Let us accept an assumption of the Poisson occurrence of earthquakes with the
activity rate A and the doubly truncated Gutenberg-Richter distribution F{x) of
earthquake magnitude x. The doubly truncated exponential distribution can be
represented by the equation (Page, 1968; Cosentino et al., 1977),

A1 - A(x)

Fix) =PrX=x)= - A
1 2

M EXx=Em,, (1)

where A, = exp(=BMuin); Az = €XP(—~BMuay); A (%) = eXp(—B%), Muay i8 the maximum
regional magnitude value, My, is the threshold magnitude, and $ is a parameter.
The above assumption implies that earthquakes of magnitudes greater than x can
be represented by a Poisson process with the mean rate of occurrence A[1 — F(x)],
where A is the activity rate corresponding to the threshold magnitude my» (Benja-
min and Cornell, 1970). Thus, the probability that X, the largest magnitude within
a period of ¢ years, will be less than some specified magnitude x is given by

Gx| t.) =Pr(X S x) = exp[;vat(H)]. (2)

where v, = A[1 = F{(mq)], Ao = exp(—fmy), and m is the threshold magnitude for
the extreme part of catalog. (my & Mumin).

The resulting probability (2) is doubly truncated. From the definition of Ay and
A, it follows that for Mmax — ®, Ay = 0, and for me = Myin = 0, A = 1. Thus for
Ap =1, 4, =0, and and ¢ = 1, equation (2) becomes:

G(x) = exp(— exp(—gx}], (3)

which is equivalent to the first Gumbel’s asymptote extremes (Tinti and Mulargia,
1985a).

Tn the case discussed, the data for determination of seismicity parameters are the
largest earthquake magnitudes Xo = (Xo, ..+, Xon)s gelected from the first part of
the catalog, from time intervals t = (¢1, .+ ., tn,). The geismicity parameters sought
are ® = (8, ) and Mumax. Then from equation (2) it follows that the likelihood
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function of ® is (Kijko and Dessokey, 1987)

Lo(®]X,) = .-131 g (Xoi, t:19), (4)
where
Agp — A(x) Vo3t
ln g(x, t|®) = ———== 4+ In — — Bx.
8z 118) = = 4 i o= — )

COMBINATION OF EXTREME AND COMPLETE CATALOGS WITH DIFFERENT
THRESHOLD MAGNITUDES

Let us assume that the second part of the catalog can be divided into s subcatalogs.
Each of those with a time span T is complete starting from the known threshold
magnitude m;, (i = 1, ..., s}. Let us also assume, that the values X; = (X, ...,
X} denote magnitudes from the ith subcatalog, where by definition X; 2 m;, i = -
1,...,8,7=1,...,n.

If the size of seismic events is independent of their number, the likelihood function
of @ for each subcatalog can be written as a product of two functions:

L8| X;) = Ly * Ly, (6)

The likelihood function of 8, L;s, is well known in seismology. The assumption
that the earthquake magnitude x is a random variable distributed according to the
doubly truncated Gutenberg-Richter equation (1) generates Ly in the following
form (Page, 1968; Cosentino et al., 1977):

”;

Lig = ﬁ""eKD(“ﬁ jgzl Xi'j)/(Ali - Ay, (7N

where A;; = exp(—8m;), i=1,...,s.

Assuming in addition that the number of earthquakes per unit time is a Poisson
random variable, the uncertainty in the activity rate of the ith subcatalog, »;, is
described by the likelihood function ds

Lin = const exp(—v; T;) (s, 1)), (8)
where const is normalizing factor
v = A1 — F(m)] (9)

and A is the aét'ivity rate corresponding to the threshold magnitude Muin = min(m;},
i=0,...,8

Equations (7} to (9), together with equation (6), define the likelihood function of
@, the parameters for each subcatalog, '

According to the principle of combination of data (Rao, 1973}, the joint likelihood
based on all data, i.e., the likelihood function for the whole span of the catalog, is
given by ' '
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L@e|X) = I‘[oL,(0|X) 10
PARAMETER ESTIMATION

In order to estimate the parameters ® = (8, A), the maximum likelihood method
is used. Putting @ In L(8|X)/9x = 0 and 4 In L(8 | X)/88 = 0, after cumbersome
calculations we obtain

1 . .
3= ¢F + ¢.° (11a)
%3 = (XY — ¢ - G2 + Nepa® + ¢:] - (11b)
where
¢’1E = roBi,

¢2H =T (E(mll, mmax)!

¢:1_E =roB; + ¢2EBI,

= 3 TiCy/n,

= i ri[E(m;, mmnx)- + D;/Ci], and

i=1

¢'3 = ZDT/R

i=1

(X is equal to the mean earthquake magnitude calculated from the extreme and
complete parts of the catalog, n = Y40 n; is the total number of earthquakes, r; =
- nfn, and
B, = (<t>A2 - (3A>)/(A2 — A1),
B2 = ((tXBA) - (t)n’f?,;,‘Az)/(Az - Al))
Ci=1- F(my), ,

D; = E{muin, mi) - E(mmim M) F(my), i=1,...,5,

E(x, y) = [xA(x) = yA(¥))/[A(x) = A,].

In addition,

(t} = 2 ti/nt!:
{tA) = T & » A(Xoi)/no,
(EX,AY = 3, 4+ Xop » A(Xoi)/ 10,

where the summation is from i =1, ..., ne.
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The indexes E and C in equations (11) are introduced in order to distinguish
different sources of functions ¢. If they follow from the extreme part of the catalog,
they are marked as E. Otherwise they follow from the complete parts of the catalog
and are marked as C.

Replacing A in equation (11b) by X calculated from equation (11a), we obtain one
equation dependent only on the parameter 8, which for a given muwa, can easily be
solved by an iterative scheme. In order to understand how general the derived
equations are, let us discuss some special cases. '

The case s =1, ry = 0 (ny = 0) and M., = m, implies that the extreme magnitudes
are not taken into consideration, and the catalog is composed of only one complete
part,

In this case equation (11) takes the form

bt
I

(12a)

s 13

=

= (XY = My — Muind1 )/ {4z — Ay) . (12b)

Equation (12a) provides the well-known maximum likelihood estimation of the
parameter of Poisson distribution. Equation (12b) takes the place of Page’s (1968)
formula for the maximum likelihood evaluation of 8, Assuming additionally that

Mimax — ©, equation (12b) replaces the well-known Aki (1965) and Utsu (1965)
formula :

1
== (X — Hlmin.
3 }

Let us discuss the second special case, when r, = 1 and m,,,, = m,. Such an
assumption implies that n; =0 (i = 1, ..., s) and the complete parts of the catalog

are not taken into consideration. It may be easily verified that equation (11) yields
(Kijko and Dessokey, 1987):

1 (t)A; = {tA)
A : A2 - Al
-1- = — <tX0A) _ (t)Amenx
5 T Ty - (A (13)

Equation (13} can be used for the maximum likelihood estimation of 8 and X in
the case when input data are limited to maximum magnitudes taken from unequal
time intervals, An additional assumption that ¢ = £ = constant (magnitudes are
taken from equal time intervals) reduces (13) to Kijko’s (1984) formula of the first
Gumbel truncated distribution. Finally, for large mua,, equation (13) is reduced to
the maximum likelihood estimation of 8 in the first Gumbel distribution (Kimball,
1946).

Formula (1.1) provides two equations for the maximum likelihood estimation of 8

.and A. From the formal point of view, the maximum likelihood estimate of m,.. is

simply the largest observed earthquake magnitude X,.... This follows from the.fact
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that L(®|X) decreases monotonically for My > %. Therefore, a more realistic
estimation of mu., can be carried out by the introduction of some additional
equations. According to our previous experience {Kijko, 1984; Kijko and Sellevoll,
1986; Kijko and Dessokey, 1987}, the condition

Xinax = EXPECT (Xmax | T), (14)

that the largest observed magnitude X, is equal to EXPECT (xmax | T), the largest
expected magnitude in the gpan of the catalog T, may provide a quite satisfactory
evaluation of m,..,. The largest expected magnitude in the time interval T is given
by the formula (Kijko, 1988) '

E\(TZ,) — E\{(TZ,)
3 oxp(—T122)

EXPECT(%max | T) = Munax — = Mmumexp(—AT), (15)

where Z; = —\A;/(A, — A1), i = 1, 2, and E,(-) denctes an exponential integral
function while the span of the catalog consists of two parts, the extreme To = iy
¢; and complete Y4, Tt

By including condition (15) into equation (11), we obtain a set of equations
determining the magimum likelihood solution, which can be solved by an iterative
procedure,

STANDARD ERRORS OF THE PARAMETERS

A formal estimate of the variance of @ = (8, ) can be obtained from the Pquations
describing the approximate variance-covariance matrix of vector 8, D(8) = A™',
where in our case the matrix A is in the form

A= Za,-,-! = —3%In L/a@;r?@,-,e-a, L,} = 1, 2. (16)

Formula (16) gives a good approximation of the sl variance-covariance matrix
(Edwards, 1972) for sufficiently large n.

It should be noted that the formulation given here does not provide the estimation
of the error of My, It is cleard that the derived procedure of parameter estimation
can give a abiased riu., when it is applied to the biased Xey. The problem is rather
important, since the uncertainty of the maximum observed magnitude X,.x can be
as high as 0.5 of the magnitude unit when it is based on historic intensity data.
Following the corresponding earlier derivations, the approximate standard deviation
of .« becomes (Kijko and Dessokey, 1987}

Gmne = Tel®)o, (17
where
T.(8) = ABS[£ exp(8) E: (D)),
¢ = TZ, and o, is the standard deviation of Xmax. T.(®) can be considefed as a

“transmission coefficient” that transmits the uncertainties in X,... into uncertain-
ties of Mupax. e
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AN EXAMPLE

As an illugtration, the described estimation procedure is used for the determina-
tion of seismicity parameters in the Calabria and eastern Sicily area limited by
36°30" to 39°60" N and 14°30’ to 17°20’E. All data used in this paper are taken
from the excellent study of Tinti and Mulargia (1984). Our catalog containg the
part with the largest earthquakes and two complete subcatalogs. The part with the
largest magnitudes contains three earthquakes with magnitudes not less than 6.1
that oceurred between 01/01/1631 and 04/21/1717 (Table 1). The first subcatalog,
complete above magnitude 5.4, contains 7 earthquakes that occurred between
04/22/1717 and 02/05/1818. The second subcatalog, complete above magnitude 4.8,
contains 38 earthquakes and covers the period from 02/06/1818 to 01/01/1979.
Table 2 lists the condensed data that were used,

An application of the described parameter estimation procedure to our data gives;
B =193 & 0.31, A = 0.25 + 0.04, i = 6.80 * 0.35, where My, = 4.8, It can be
seen that 5 = 1.93 + 0.31 corresponds to b from the Gutenberg-Richter equation
equal to 0.83 £ 0.13. M. and its standard deviation were calculated according to
equations (14} and (17), where the largest observed magnitude Xioax = 6.6 (Karnik,
1971) and o, = 0.25. The “transmission coefficient” calculated according to formula
(17) is equal to 1.39,

The proposed formalism provides us with one more attractive feature. A relative
quantity of information provided by each part of the catalog can be calculated. By
definition (Edwards, 1972), the expected information matrix provided by experiment
is of the form

_ &In L(8]X)

Iy = . 18)
’ 88,00 ob (
TABLE 1
MaXiMUM MACROSEISMIC MAGNITUDES OF EARTHQUAKES FELT
IN CALABRIA AND EASTERN SICILY FOR THE PERIOD FROM (1701
) 1631 To 04/21 1717 '
Event Date Magnitude
1 03/27 1638 6.1
2 ; 11/06 1659 8.1
3 " 01711 1693 6.6
* According to Tinti and Mulargia (1984).
TABLE 2
SUMMARY OF THE INPUT DaTa*
Complete Parts of the Catalog
Largest Magnitudes
Subcatalog 1 Subcatalog 2
Time period 1/1/1631-4/21/1717 4}22/1717—2/05/1818 2/06/1818-1/01/1979
Number of magnitudes 3 7 a8
Maximum observed magnitude 6.6
Threshold magnitude 5.4 48
Average magnitude B.74 5.24

* From Tinti and Mulargia (1984).
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Thus, in our case, the rate of information of ©; parameter provided by the kth
complete subcatalog takes the form
3’In L,(@ | X) #In L(8|X)
—_— ———t (19)
08, Is—e a9 1e=6

fori=1,2and k=1,.

An application of formula (19) to our data shows that the first complete subcatalog
contains 24.2% and 14,6% of the total information of § and ?\ respectively. The
second subcatalog gives 64.1% and 79.2% information respectlvely (Table 3). The
probability that a given sarthquake magnitude will not be exceeded in any year in
the discussed area is shown in Figure 2.

It is interesting to compare our results with the original ones obtained by Tinti
and Mulargia (1984). The best least-squares fit of the first Gumbel asymptote gives
= 1.81 + 0.07, while our procedure gives 1.93 + 0.31. The difference between these
two sets of values in terms of return periods is also small, even for large magnitudes.
For example the return periods for magnitude 6.0 are 49 and 51 years, respectively,
as calculated by Tinti and Mulargia and by us, It is difficult to perform such a
comparison for very large earthquakes. The discrepancy follows from the fact that
our model takes into account the saturation of magnitude (M.}, while the first
Gumbel asymptote is unlimited. In addition, the discrepancy can be ascribed to
different magnitude scales (we follow the Karnik (1972) scale) and different data
sets used by Tinti and Mulargia and by us.

TABLE 23

EVALUATION OF RELATIVE AMOUNTS OF INFORMATION
(EqQuATION (19)) PrROVIDED BY DIFFERENT PAHTS OF THE

CATALOG
Guantily of information
Part of the catalog (%)
i) A
Extreme 11.7 6.2
Complete = 5.2 24.2 14.6
Complete = 4.8 64.1 79.2

RETURN TIMES [ YEARS J

2 :Ii & 10 20 50 (8] 500
7.0 _—
) A
Q 6»5 —]—a |- [ N ————— e o
5 M qp= 6.80 o
E 80 ,
= LA Calabric and
O g A sastarn Sicily
™ L~ axtramaes:
5 A 1631 1747
5.0 A complate;
b 1717 = |979
5.8 7750885 .9 95 .99 '995 999

PROBABILITY

FiG. 2. Mean return periods and probability that a given magnitude will not be exceeded in any year
for the discussed area,
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REMARKS AND CONCLUSIONS

In this paper, the problem of incorporating many sources of available seismological
information is presented. This is particularly useful when historical catalogs have
to be combined with short periods of instrumental data.

The proposed approach is extremely flexible and provides several attractive
properties. It is possible to estimate Mmax from the largest known historical earth-
quakes that occurred before our catalog begins (Fig. 1), This can be achieved by
substituting X... by the largest known earthquake magnitude and the span of
catalog by the time interval between the date of this event occurrence and the end
of the catalog.

Our approach accommodates “gaps” in the extreme part as well as in the complete
parts of the catalog. This follows from the fact that the procedure describing the
maximum likelihood estimation does not require magnitudes taken from consecutive
time intervals,

A method of seismic hazard evaluation, taking into account the different quality
of available earthquake files, is presented. The proposed approach is very general
and is derived from the commonly accepted assumptions and constraints related to
sarthquake occurrence. The described procedure permits us to calculate the maxi-
mum likelihood estimates of the mean rate A of earthquake occurrence, the param-
eter b of the Gutenberg-Richter relation (b = 8 log e), and the mazimum regional
magnitude Mmax. With reference to the importance of A, 8, and Mme values for
geismic hazard analysis, additional formulas are given describing the uncertainties
of their estimates. The proposed procedure was applied to a set of earthquake data
felt and recorded in the Calabria and eastern Sicily area, known for its high
seismicity, where some of the most catastrophic earthquakes in Ttaly were recorded
(Tinti and Mulargia 1984).

The computer programs used in our study (written in GW BASIC and FORTRAN
77 for IBM PC and compatible) can be provided if a blank 5" floppy disk is sent
to one of the authors.
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