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Abstract—This paper provides a generic equation for the evaluation of the maximum earthquake

magnitude mmax for a given seismogenic zone or entire region. The equation is capable of generating

solutions in different forms, depending on the assumptions of the statistical distribution model and/or the

available information regarding past seismicity. It includes the cases (i) when earthquake magnitudes are

distributed according to the doubly-truncated Gutenberg-Richter relation, (ii) when the empirical

magnitude distribution deviates moderately from the Gutenberg-Richter relation, and (iii) when no specific

type of magnitude distribution is assumed. Both synthetic, Monte-Carlo simulated seismic event

catalogues, and actual data from Southern California, are used to demonstrate the procedures given for the

evaluation of mmax.

|The three estimates of mmax for Southern California, obtained by the three procedures mentioned above,

are respectively: 8.32 ± 0.43, 8.31 ± 0.42 and 8.34 ± 0.45. All three estimates are nearly identical,

although higher than the value 7.99 obtained by FIELD et al. (1999). In general, since the third procedure is

non-parametric and does not require specification of the functional form of the magnitude distribution, its

estimate of the maximum earthquake magnitude mmax is considered more reliable than the other two which

are based on the Gutenberg-Richter relation.

Key words: Seismic hazard, maximum earthquake magnitude mmax.

1. Introduction

This work is aimed at providing a tool that allows for the assessment of the

maximum earthquake magnitude, mmax.

To avoid confusion about the terminology, in this work the maximum

earthquake magnitude, mmax, is defined as the upper limit of magnitude for a given

seismogenic zone or entire region. Also, synonymous with the upper limit of

earthquake magnitude, is the magnitude of the largest possible earthquake. The

value of maximum magnitude so defined is the same as that used by many

earthquake engineers (EERI COMMITTEE, 1984) and complies with the meaning of

this parameter as used by, e.g., HAMILTON (1967), PAGE (1968), COSENTINO et al.

(1977), the Working Group on California Earthquake Probabilities (WGCEP,

1995), STEIN and HANKS (1998), and FIELD et al. (1999). This terminology assumes a

sharp cut-off magnitude at a maximum magnitude mmax, so that, by definition, no
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earthquakes are possible with a magnitude exceeding mmax. Cognizance should be

taken of the fact that an alternative, ‘‘soft’’ cut-off maximum earthquake magnitude

is also in use (MAIN and BURTON, 1984a; KAGAN, 1991; 2002 a,b). The latter

formalism is based on the assumption that seismic moments follow the Gamma

distribution. One of the distribution parameters is also called the maximum seismic

moment and the corresponding value of earthquake magnitude is called the ‘‘soft’’

maximum magnitude. Beyond the value of this maximum magnitude, the distribu-

tion decays much faster than the classical Gutenberg-Richter relation. However, this

means that a ‘‘soft’’ cut-off is envisaged since earthquakes with magnitudes larger

than such a maximum magnitude are not excluded. Although a model with the

‘‘soft’’ maximum earthquake magnitude has been used by KAGAN (1994, 1997),

MAIN (1996), MAIN et al. (1999), SORNETTE and SORNETTE (1999) and PISARENKO

and SORNETTE (2001), this paper only considers a model having a sharp cut-off of

maximum magnitude.

Although a knowledge of the value of the maximum possible earthquake

magnitude mmax is required in many engineering applications, it is surprising how

little has been done in developing appropriate techniques for an estimation of this

parameter. At present there is no generally accepted method for estimating the value

of mmax. The current methods for its evaluation fall into two main categories:

deterministic and probabilistic.

The deterministic procedure most often applied is based on the empirical

relationships between magnitude and various tectonic and fault parameters. There

are several research efforts devoted to the investigation of such relationships. The

relationships are different for different seismic areas and different types of faults

(WELLS and COPPERSMITH, 1994; ANDERSON et al., 1996, and the references

therein). As an alternative to the above technique, researchers often try to relate

the value of mmax to the strain rate or the rate of seismic-moment release

(PAPASTAMATIOU, 1980; ANDERSON and LUCO, 1983; WGCEP, 1995; STEIN and

HANKS, 1998; FIELD et al., 1999). Such an approach has also been applied in

evaluating the maximum possible magnitude of seismic events induced by mining

(e.g., MCGARR, 1984). Another procedure for the estimation of mmax was

developed by JIN and AKI (1988), where a remarkably linear relationship was

established between the logarithm of coda Q0 and the largest observed magnitude

for earthquakes in China. The authors postulate that if the largest earthquake

magnitude observed during the last 400 years is the maximum possible magnitude

mmax, the established relation will give a spatial mapping of mmax. A very

interesting, alternative procedure for the estimation of mmax was also described by

WARD (1997). Ward’s computer simulations of the largest earthquake are

impressive and convincing. Nevertheless, one must realize that all the quantitative

assessments given by WARD (1997) are based on the particular model assumed for

the rupture process, on the postulated parameters of the strength of the faults and

on the configuration of the faults.
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However, in most cases, the uncertainty of the value of the parameter mmax as

determined by any deterministic procedure is large, often reaching a value of the

order of one unit on the magnitude scale.

In the probabilistic procedures, the value of mmax is estimated purely on the basis

of the seismological history of the area, viz. by using seismic event catalogs and an

appropriate statistical estimation procedure. The most often used probabilistic

procedure for maximum earthquake magnitude was developed in the late sixties, and

is based on the extrapolation of the classical, log-linear, frequency-magnitude

Gutenberg-Richter relation. Among seismologists and earthquake engineers, the best

known is probably the extrapolation procedure as applied recently, e.g., by

FROHLICH (1998), and the ‘‘probabilistic’’ extrapolation procedure applied by

NUTTLI (1981), in which the frequency-magnitude curve is truncated at the specified

value of annual probability of exceedance (e.g., 0.001). Another technique is based

on the formalism of the extreme values of random variables. The statistical theory of

extreme values was known and well developed in the forties already, and was applied

in seismology as early as 1945 (e.g., NORDQUIST, 1945). The appropriate statistical

tools required for the estimation of the end-point of distribution functions were

developed later (e.g., ROBSON and WHITLOCK, 1964; WOODROOFE, 1972, 1974; WEISS

and WOLFOWITZ, 1973; HALL, 1982). However, it was used from the eighties only in

estimating maximum earthquake magnitude (DARGAHI-NOUBARY, 1983; KIJKO and

SELLEVOLL, 1989, 1992; PISARENKO, 1991; PISARENKO et al., 1996).

The purpose of this paper is to provide a procedure (equation) for the evaluation

of mmax, which is free from subjective assumptions and which is dependent only on

seismic data. The procedure is generic and is capable of generating solutions in

different forms, depending on the assumptions about the statistical model and/or the

information available about past seismicity. The procedure can be applied in the

extreme case when no information about the nature of the earthquake magnitude

distribution is available, i.e., the procedure is capable of generating an equation for

mmax, which is independent of the particular frequency-magnitude distribution

assumed. The procedure can also be used when the earthquake catalog is incomplete,

i.e., when only a limited number of the largest magnitudes are available.

2. A Generic Equation for the Evaluation of the Maximum

Earthquake Magnitude, mmax

Presume that in the area of concern, within a specified time interval T, all n of the

main earthquakes that occurred with a magnitude greater than or equal to mmin are

recorded. Let us assume that the value of the magnitude mmin is known and is

denoted as the threshold of completeness. We assume further that the magnitudes are

independent, identically distributed, random values with cumulative distribution

function (CDF), FM(m). The unknown parameter mmax is the upper limit of the range
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of magnitudes and is thus termed the maximum earthquake magnitude, and is to be

estimated. Let us assume that all n recorded magnitudes are ordered in ascending

order, i.e., m1 £ m2 £ … £ mn. We observe that mn, which is the largest observed
magnitude (denoted also as mobs

max), has a CDF

FMnðmÞ ¼
0; for m < mmin,
½FM ðmÞ�n; for mmin � m � mmax.
1; for m > mmax.

8<
: ð1Þ

After integrating by parts, the expected value of Mn, E(Mn), is

EðMnÞ ¼
Zmmax

mmin

m dFMnðmÞ ¼ mmax �
Zmmax

mmin

FMnðmÞ dm: ð2Þ

Hence

mmax ¼ EðMnÞ þ
Zmmax

mmin

FMðmÞ½ �ndm: ð3Þ

Keeping in mind that the value of the largest observed magnitude, mobs
max, is the best

unbiased estimate of E(Mn) (PISARENKO et al., 1996), after replacement of E(Mn) by

mobs
max, equation (3) takes the form

mmax ¼ mobs
max þ

Zmmax
mmin

FM ðmÞ½ �ndm; ð4Þ

in which the desired mmax appears on both sides. However, from this equation an

estimated value of mmax (and denoted as m̂max) can be obtained only by iteration. The

first approximation of m̂max can be obtained from equation (4) by replacing the

unknown upper limit of integration, mmax, by the maximum observed magnitude,

mobs
max. The next approximation is obtained by replacing the upper limit of integration

by its previous solution. Some authors simply call the method the iterative method

and it was found that in most cases the convergence is very fast. An extensive analysis

and formal conditions of convergence of the above iterative procedure are discussed,

for example, by LEGRAS (1971).

COOKE (1979) was probably the first to obtain this estimator (4) of the upper

bound of a random variable1. If applied to the assessment of the maximum possible

earthquake magnitude, mmax, equation (4) states that mmax is equal to the largest

magnitude already observed, mmax
obs, increased by an amount D ¼

Rmmax

mmin

FM ðmÞ½ �ndm:

1 It should be noted that in his original paper COOKE (1979) gave an equation in which the upper limit

of integration mobs
max is rather than mmax. Clearly, for large n, when the value of m

obs
max and mmax are close to

each other, the two solutions are virtually equivalent.
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Equation (4) is, by its nature, very general and has several interesting properties. For

example, it is valid for any CDF, FM(m), and does not require the fulfillment of any

additional conditions. It may also be used when the exact number of earthquakes, n,

is not known. In this case, the number of earthquakes can be replaced by kT. Such a
replacement is equivalent to the assumption that the number of earthquakes

occurring in unit time conforms to a Poisson distribution with parameter k, with T
the span of the seismic catalog. It is also important to note that, since the value of the

integral D is never negative, equation (4) provides a value of m̂max, which is never less

than the largest magnitude already observed. Of course, the drawback of the formula

is that it requires integration. For some of the magnitude distribution functions the

analytical expression for the integral does not exist or, if it does, requires awkward

calculations. This is, however, not a real hindrance, since numerical integration with

today’s high-speed computer platforms is both very fast and accurate. Equation (4)

will be called the generic equation for the estimation of mmax.

In the following section we will demonstrate how equation (4) can be used in the

assessment of mmax in the different circumstances that a seismologist or earthquake

engineer might face in real life. The three cases to be considered are:

(i) the earthquake magnitudes are distributed according to the doubly-truncated

Gutenberg-Richter relation,

(ii) the empirical magnitude distribution deviates moderately from the Gutenberg-

Richter relation,

(iii) no specific form of the magnitude distribution is assumed, and only a few of the

largest magnitudes are known.

3. Application of the Generic Equation of mmax to three Special Cases

3.1. CASE I: Use of the Generic Formula when earthquake magnitudes follow the

Gutenberg-Richter magnitude distribution. (Formula for mmax for those who accept

the Gutenberg-Richter frequency-magnitude distribution unconditionally.)

In this section we will demonstrate how to apply the generic equation (4), when

earthquake magnitudes follow the Gutenberg-Richter frequency magnitude distri-

bution.

For the frequency-magnitude Gutenberg-Richter relation, the respective CDF of

magnitudes, which are bounded from above by mmax, is (PAGE, 1968)

FM ðmÞ ¼
0; for m < mmin,
1�exp½�bðm�mminÞ�

1�exp½�bðmmax�mminÞ� ; for mmin � m � mmax,

1; for m > mmax,

8><
>: ð5Þ

where b = b ln(10), and b is the b parameter of the Gutenberg-Richter relation.

Following equation (4), the estimator of mmax requires the calculation of the integral
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D ¼
Zmmax

mmin

1� exp½�bðm� mminÞ�
1� exp½�bðmobs

max � mminÞ�

� �n
dm; ð6Þ

an integral which is not simple to evaluate. It can be shown that an approximate,

straightforward estimator of mmax can be obtained through the application of

Cramér’s approximation. According to CRAMÉR (1961), for large n (about 10 and

more), the value of FM ðmÞ½ �n is approximately equal to expf�n½1� FM ðmÞ�g. Simple
calculations show that after replacement of FM ðmÞ½ �n by its Cramér approximate
value, integral (6) takes the form

D ¼ E1ðn2Þ � E1ðn1Þ
b expð�n2Þ

þ mmin expð�nÞ; ð7Þ

where n1 ¼ n=f1� exp½�bðmmax � mminÞ�g; n2 ¼ n1 exp½�bðmmax � mminÞ�; and E1ð�Þ
denotes an exponential integral function. The function E1ð�Þ is defined as E1ðzÞ ¼R1
z expð�fÞ=f df, and can be conveniently approximated as E1ðzÞ ¼ z2þa1zþa2

zðz2þb1zþb2Þ
expð�zÞ; where a1 = 2.334733, a2 = 0.250621, b1 = 3.330657, and b2 = 1.681534

(ABRAMOWITZ and STEGUN, 1970). Hence, following equation (4), the estimator of

mmax for the Gutenberg-Richter frequency-magnitude distribution is obtained as a

solution of the equation

mmax ¼ mobs
max þ

E1ðn2Þ � E1ðn1Þ
b expð�n2Þ

þ mmin expð�nÞ: ð8Þ

It must be noted that in its current form, equation (8) does not constitute an

estimator for mmax, since expressions n1 and n2, which appear on the right-hand side

of the equation, also contain mmax. Generally the assessment of mmax is obtained by

the iterative solution of equation (8). However, numerical tests based on simulated

data show that when mmax � mmin � 2, and n  100, the parameter mmax in n1 and n2
can be replaced by mobs

max, thus providing an mmax estimator which can be obtained

without iterations.

Equation (8) was introduced in KIJKO and SELLEVOLL (1989). This equation has

subsequently been used for the estimation of the maximum possible earthquake

magnitude in several seismically active areas such as China (YURUI and TIANZHONG,

1997); Canada (WEICHERT and KIJKO, 1989); Iran (MOTAZEDIAN et al., 1997); India

(SHANKER, 1998); Romania (MARZA et al., 1991); Greece (PAPADOPOULOS and

KIJKO, 1991); Algeria (HAMDACHE, 1998; HAMDACHE et al., 1998); Italy (SLEJKO and

KIJKO, 1991); Spain (GARCIA-FERNANDEZ et al., 1989), Turkey (APTEKIN

and ONCEL, 1992; APTEKIN et al., 1992) and the West Indies (ASPINALL et al.,

1994). The value of mmax obtained from the solution of equation (8) will be termed

the Kijko-Sellevoll estimator of mmax, or, in short, K-S.

It should be noted again that the K-S equation for mmax can be used even when

the number of seismic events, n, is not known. In such a case, the number of seismic
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events should be replaced by kT and this replacement is equivalent to the assumption
that the number of occurrences conforms with a Poisson distribution which has

parameter k, and T is the timespan of the seismic catalog. Calculation of the variance
of the estimated maximum earthquake magnitude, varðm̂maxÞ, is the same as for
Cases II and III, and is shown in Section 3.3.

A significant shortcoming of the K-S equation formmax estimation comes from the

implicit assumptions that (i) seismic activity remains constant in time, (ii) the selected

functional form of magnitude distribution properly describes the observations, and

(iii) the parameters of the assumed distribution functions are known without error.

3.2. CASE II: Application of the Generic Formula to the Gutenberg-Richter

Magnitude Distribution in the case of uncertainty in the b value. (Formula for mmax
for those who have limited faith in the Gutenberg-Richter frequency-magnitude

distribution.)

In contrast to the assumptions of Case I, that earthquake magnitudes follow the

Gutenberg-Richter magnitude distribution, many studies of seismic activity suggest

that the seismic process can be composed of temporal trends, cycles, short-term

oscillations and pure random fluctuations. A list of well-documented cases of the

temporal variation of seismic activity world-wide is given in KIJKO and GRAHAM

(1998).

When the variation of seismic activity is a randomprocess, the Bayesian formalism,

in which the model parameters are treated as random variables, provides the most

efficient tool in accounting for the uncertainties considered above (e.g., DEGROOT,

1970). In this section, a Bayesian-based equation for the assessment of the maximum

earthquake magnitude will be derived in which the uncertainty of the Gutenberg-

Richter parameter b is taken into account. By allowing for such uncertainty in the b

value, it is reasonable to drop the implicit assumptions (i), (ii), and (iii) of Case I.

Following the assumption that the variation of the b value in the Gutenberg-

Richter-based CDF (5) may be represented by a Gamma distribution with

parameters p and q, the Bayesian (also known as compound or mixed) CDF of

magnitudes takes the form (CAMPBELL, 1982):

FM ðmÞ ¼
0; for m < mmin,

Cb 1� p
pþm�mmin

	 
qh i
; for mmin � m � mmax,

1; for m > mmax,

8><
>: ð9Þ

where Cb is a normalizing coefficient. It is not difficult to show that p and q can be

expressed in terms of the mean and variance of the b value, where p ¼ b=ðrbÞ2 and
q ¼ ðb=rbÞ2 . The symbol b denotes the known, mean value of the parameter b, rb is

the known standard deviation of b describing its uncertainty, and Cb is equal to

f1� ½p=ðp þ mmax � mminÞ�qg�1. Equation (9) is also known (CAMPBELL, 1982) as the
Bayesian Exponential-Gamma CDF of earthquake magnitude.
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It is important to note that the above way of handling the uncertainty of

parameter b is by no means unique. For example, for the same purpose, MORTGAT

and SHAH (1979) used a combination of the Bernoulli and the Beta distributions.

DONG et al. (1984), as well as STAVRAKASIS and TSELENTIS (1987), used a

combination of uniform and multinomial distributions. Excellent summaries of

alternative ways of handling various uncertainties that are present in the parameters,

in the model and in the data, are found in papers by BENDER and PERKINS (1993) and

RHOADES et al. (1994).

Knowledge of the Bayesian, Gutenberg-Richter distribution (9), makes it possible

to construct the Bayesian version of the estimator of mmax. Following the generic

equation (4), the estimation of mmax requires calculation of the integral

D ¼ ðCbÞn
Zmmax

mmin

1� p
p þ m� mmin

 �q� �n
dm; ð10Þ

which, after application of Cramér’s approximation, can be expressed as

D ¼ d1=qþ2 exp½nrq=ð1� rqÞ
b

Cð�1=q; d � rqÞ � Cð�1=q; dÞ½ �; ð11Þ

where r ¼ p=ðp þ mmax � mminÞ,d ¼ nCb, and Cð�; �Þ is the Incomplete Gamma

Function. Again, as in the previous case (equation 8), equation (11) does not provide

an estimator for mmax, since some terms on the right-hand side also contain mmax.

Thus, the estimator of mmax, when the uncertainty of the Gutenberg-Richter

parameter b is taken into account, is calculated as an iterative solution of the equation

mmax ¼ mobs
max þ

d1=qþ2 exp½n � rq=ð1� rqÞ
b

Cð�1=q; d � rqÞ � Cð�1=q; dÞ½ � ð12Þ

The value of mmax obtained from the solution of equation (12) will be denoted as the

Kijko-Sellevoll-Bayes estimator of mmax, or, in short, K-S-B. An extensive

comparison of performances of K-S and K-S-B estimators is given in KIJKO and

GRAHAM (1998).

3.3. Case III: Estimation of mmax when no specific form of the earthquake

magnitude distribution is assumed. (Formula for mmax for those who only believe in

what they see.)

The procedures derived in the previous sections are parametric and are applicable

when the empirical log-frequency-magnitude graph for the seismic series exhibits

apparent linearity, starting from a certain mmin value. However, many studies of

seismicity show that, in some cases, (i) the empirical distributions of earthquake

magnitudes are of bi- or multi-modal character, (ii) the log-frequency-magnitude

relation has a strong nonlinear component or (iii) magnitude has the ‘‘jump’’ at the
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upper end of the empirical distribution (PISARENKO and SORNETTE, 2001), and the

presence of ‘‘characteristic’’ events (SCHWARTZ and COPPERSMITH, 1984) is evident.

There are, by way of illustration, well-documented cases of such deviations and they

include natural seismicity in Alaska (DEVISON and SCHOLZ, 1984), Italy (MOLCHAN et

al., 1997), Mexico (SINGH et al., 1983), Japan (WESNOUSKY et al., 1983) and the

United States (MAIN and BURTON, 1984b; WEIMER and WYSS, 1997), as well as mine-

induced seismicity in the former Czechoslovakia, in Poland and in South Africa

(FINNIE, 1994; GIBOWICZ and KIJKO, 1994).

In order to use the generic equation (4) in such cases, the analytical, parametric

models of the frequency-magnitude distributions should be replaced by a non-

parametric counterpart.

The non-parametric estimation of a probability density function (PDF) is an

approach that deals with the direct summation of the kernel functions using sample

data. Given the sample data mi, i ¼ 1; . . . ; n; and the kernel function K(•), the kernel
estimator f̂M ðmÞ of an actual, and unknown PDF fM ðmÞ, is

f̂M ðmÞ ¼
1

nh

Xn
i¼1

K
m� mi

h

	 

; ð13Þ

where h is a smoothing factor. The kernel function K(•) is a PDF, symmetric about
zero. Its specific choice is not so important for the performance of the method; many

unimodal distribution functions ensure similar efficiencies. In this work the Gaussian

kernel function,

KðnÞ ¼ 1ffiffiffiffiffiffi
2p

p exp �n2=2
� �

; ð14Þ

is used. However, the choice of the smoothing factor h is crucial because it affects the

trade-off between random and systematic errors. Several procedures exist for the

estimation of this parameter, none of them being distinctly better for all varieties of

real data (SILVERMAN, 1986). For purposes of this report the least-squares cross-

validation (HALL, 1983; STONE, 1984) was used. The details of the procedure are

given by KIJKO et al. (2001).

Following the functional form of a selected kernel (14) and the fact that the data

come from a finite interval hmmin;mmaxi, the respective estimators of the PDF and

CDF of seismic event magnitude are

f̂M ðmÞ ¼

0; for m < mmin,

h
ffiffiffiffi
2p

pð Þ�1
Pn
i¼1

exp �0:5 m�mi
hð Þ2

� �
Pn
i¼1

U
mmax�mi

hð Þ�U
mmin�mi

hð Þ½ �;
for mmin � m � mmax,

0; for m > mmax,

8>>>><
>>>>:

ð15Þ

and
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F̂M ðmÞ ¼

0; for m < mmin;Pn
i¼1

U m�mi
hð Þ�U

mmin�mi
hð Þ½ �

Pn
i¼1

U
mmax�mi

hð Þ�U
mmin�mi

hð Þ½ �
; for mmin � m � mmax;

1; for m > mmax.

8>>>>><
>>>>>:

ð16Þ

where UðnÞ denotes the standard Gaussian cumulative distribution function.
Despite its flexibility, a model-free technique such as the one above has been used

only occasionally in seismology. One of the first uses was in the estimation of the

conditional failure rates from successive recurrence times of micro-earthquakes

(RICE, 1975). The non-parametric CDF of seismic event occurrence time was also

employed by SóLNES et al. (1994). Another application involved the estimation

of the spatial distribution of seismic sources (VERE-JONES, 1992; FRANKEL, 1995;

CAO et al., 1996; WOO, 1996; BOMMER et al., 1997; JACKSON and KAGAN, 1999;

STOCK and SMITH, 2002, and the references there) and the non-parametric estimation

of temporal variations of magnitude distributions in mines (LASOCKI and

WEGLARCZYK, 1998).

By applying the non-parametric, Gaussian-based assessment of the CDF as given

by equation (16), the approximate value of the integral for D is (KIJKO et al., 2001)

D ffi
Zmmax

mmin

½F̂MðmÞ�n dm ¼
Zmmax

mmin

Pn
i¼1

U m�mi
h

� �
� U mmin�mi

h

� �� �
Pn
i¼1

U mmax�mi
h

� �
� U mmin�mi

h

� �� �

2
664

3
775
n

dm: ð17Þ

Therefore, the equation for mmax based on the non-parametric Gaussian estimation

of the PDF takes the form

mmax ¼ mobs
max þ

Zmmax

mmin

Pn
i¼1

U m�mi
h

� �
� U mmin�mi

h

� �� �
Pn
i¼1

U mmax�mi
h

� �
� U mmin�mi

h

� �� �

2
664

3
775
n

dm: ð18Þ

The value of mmax obtained from equation (18) will be denoted as the non-

parametric, Gaussian-based estimator or, in short, N-P-G.

The N-P-G estimator of mmax is very useful. Its strongest point is that it does not

require specification of the functional form of the magnitude distribution FM ðmÞ. By
its nature, therefore, it is capable of dealing with cases of complex empirical

distributions, e.g., distributions that are in extreme violation of log-linearity, and/or

are multimodal, and/or incorporate ‘‘characteristic’’ earthquakes. The drawback of

estimator (18) is that, formally, it requires knowledge of all events with magnitude

above a specified level of completeness mmin. In practice, though, this can be reduced

to knowledge of a few (say 10) of the largest events. Such a reduction is possible
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because the contribution of the weak events to the estimated value of mmax decreases

very rapidly as magnitude decreases, and for large n, the few largest observations

carry most of the information about its end point, mmax. Another drawback of

formula (18) is that it requires numerical integration. However, it need not be a real

obstacle, since numerical integration with today’s PC’s is both rapid and accurate.

One should also mention that it is possible to derive another model-free technique

for the estimation of mmax, which is not based on the formalism of the non-

parametric kernel estimation procedure. Such a procedure can be developed by

means of order statistics, where the CDF of the magnitude distribution is model-free

and is based only on the recorded seismic series.

3.4. Uncertainty in the Determination of mmax

Different approaches can be used in the estimation of the accuracy of the

above estimators of mmax. Essentially, the uncertainty in the determination of mmax
comes from the random nature of the largest observed magnitude, mobs

max. This

uncertainty has two components, one, which originates from the random nature of

the value of the earthquake magnitude, and the second, which derives from the

erroneous determination of its value. Both errors are of an epistemic nature (TORO

et al., 1997).

Simple computations show (KIJKO and GRAHAM, 1998) that the approximate

variance of the first contribution into the uncertainty of determination of mmax is of

the order of D2. Assuming that the standard error in the determination of the

maximum observed magnitude, mobs
max, is known and equal to rM , the second

contribution to the variance of m̂max is equal to r2M . Therefore, the approximate, total
variance of any of the estimators [i.e., (8), (12) and (18)] is given by

Varðm̂maxÞ ¼ r2M þ D2; ð19Þ

where the corrections D are described by equations (7), (11) and (17) respectively, and
the upper limit of integration, mmax, is replaced by its estimate, m̂max .

Probably the simplest assessment of the exact confidence limits for the estimated

value of mmax can be obtained by applying the formalism based on the fiducial

distribution (KENDALL and STUART, 1969), as applied by PISARENKO (1991). Before

deriving the required distribution, we replace the current notation of the CDF of

earthquake magnitude, FM ðmÞ, by FM (m; mmax), which explicitly shows that the

maximum magnitude, mmax, is one of the parameters of the magnitude distribution.

Following the procedure developed by PISARENKO (1991), a 100ð1� aÞ % upper

confidence limit on the estimated maximum earthquake magnitude m̂max can be

written as

Pr½mmax < F �1
M ðmobs

max; a
1=nÞ� ¼ 1� a; ð20Þ
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where F �1
M ðm; �Þ denotes an inverse of the cumulative distribution function

FM ðm;mmaxÞ. Knowledge of the above equation makes it possible to construct the
distribution of mmax

Pr½mmax < z� ¼ 1� ½FM ðmobs
max; zÞ�

n; ð21Þ

known as the fiducial distribution. Equation (21) describes the confidence limits for

any actual value of mmax which can be used when the parameters of the distribution

FM ðmÞ and the maximum observed magnitude mobs
max are known. Again, after

accepting the assumption that the number of seismic events, n, obeys the Poisson

distribution with parameter k, after the replacement n ¼ kT , where T denotes the

time span of the catalogue, one obtains a distribution of mmax independent of the

number of observations, n. The simplicity of equation (21) makes it very attractive.

Also it is interesting to note, that when z ! þ1, the probability (21) tends to some

value less than unity. This means that with probability a0 ¼ 1� Pr½mmax ¼ þ1� ¼
½FMðmobs

max;þ1Þ�n, the current information (seismic event catalogue, applied model of
frequency-magnitude distribution and its parameters), is inadequate and/or insuf-

ficient for the reliable assessment of mmax. One can find more information on this

interesting subject in the paper by PISARENKO (1991).

4. Tests of the Procedures using Monte-Carlo Simulations

Simulated catalogues were used to determine the accuracy with which mmax was

estimated by the procedures given in the previous sections. The tests were designed to

answer three basic questions: (1) How does the accuracy of the estimated maximum

earthquake magnitude depend on the number of events in the catalogue? More

precisely, what is the minimum number of events required to estimate mmax with

sufficient accuracy (say to 0.1 unit of magnitude)? (2) How do the K-S, K-S-B and N-

P-G solutions of mmax behave in the presence of ‘‘reasonable’’ differences between the

assumptions used in their derivation and the true model of the frequency-magnitude

distribution? (3) If it is true that only the largest events provide information on mmax,

how many such events are required to assess mmax with sufficient accuracy?

4.1. The Minimum Number of Events Required to Assess mmax

To answer the first question 1000 simulated catalogues were generated, with the b

value equal to exactly 1 ðb ffi 2:30Þ, with the ‘‘true’’ mmax = 8.0, and with mmin = 7.0,

6.0, and 5.0, respectively. The simulations were performed for different numbers of

earthquakes, ranging from 50 to 500. All of the generated magnitudes were rounded

off to the first decimal place.

The results of the estimation of mmax by the K-S procedure for the respective 3

levels of completeness (mmin = 7.0, 6.0, and 5.0) are given in Figure 1. All
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calculations for mmax were performed using a b value that was obtained

empirically, according to the maximum likelihood procedure developed by PAGE

(1968). The results of the mmax evaluation in the cases when the range hmmin;mmaxi
is equal to one, two and three units of magnitude are shown by the circlular,

triangular and square markers, respectively. Figure 1 indicates that 50 events, on

average, are sufficient for the assessment of the value of mmax, i.e. when the

difference between mmax and the level of completeness mmin does not exceed two

units of magnitude. If the magnitude range is equal to three, the formula works

well for about 150 events or more. This numerical experiment is important

because it provides a lower limit on the number of seismic events required for a

reliable assessment of mmax. Conclusions drawn from these numerical experiments

are correct not only for the values of mmin and mmax actually used, but for any

values of mmax and mmin, provided that the difference between them is the same

as in the experiment, and that the b value of Gutenberg-Richter relation is close

to 1.
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Figure 1

Performance of the K-S estimator for a magnitude range from 1 to 3. Each of the maximum magnitude

mmax estimates are based on 1000 synthetic catalogues with magnitudes distributed according to the

doubly-truncated Gutenberg-Richter relation with a b value equal to 1. When the magnitude range Æmmin,
mmaxæ does not exceed 2 units of magnitude (lines with triangular and circle markers), then 50 events on
average are sufficient to assess the value of mmax. If the range is close to 3 units of magnitude (line with

square markers), an accurate assessment of mmax requires at least 150 events.
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4.2. The Behavior of the K-S, K-S-B and N-P-G Estimators of mmax when Data are

Generated by Different Frequency-magnitude Distributions

Simulated magnitudes were generated using three different models for their

frequency-magnitude distribution namely:

– Model I: classical, doubly-truncated Gutenberg-Richter (equation 5),

– Model II: Bayesian Gutenberg-Richter (equation 9), and

– Model III: a mixture of the Gutenberg-Richter and characteristic earthquake

distributions.

The parameters of the three models are given in Table 1. The results of the mmax

assessments for Models I, II and III are shown in Figures 2, 3 and 4, respectively. For

each model there are three estimates for mmax: K-S, K-S-B and N-P-G. Again, all the

estimates are obtained from averaging the values of mmax calculated from 1000

catalogues of which the range in the number of events in each catalogue is between

50–500.

Estimation of mmax based on Model I. (Synthetic data are generated according to

the classical Gutenberg-Richter relation). The mean values of the non-parametric (N-

P-G) and the parametric (K-S and K-S-B) estimates of mmax for model I, with mmin
= 6.0, mmax = 8.0 and b = 1.0 are presented in Figure 2. When the number of

events is less than about 100, all three estimators are slightly biased. The bias of the

non-parametric estimate, N-P-G, is negative, while the bias of the parametric

estimators, K-S and K-S-B, is positive. In both cases the bias is low—it does not

exceed 0.1 unit of magnitude. As one might expect, both parametric procedures

provide similar results. The bias decreases as the number of events increases. In

absolute terms, the non-parametric estimate of mmax is not significantly worse than its

parametric counterpart. In the above experiment a moderate difference of 2 units of

magnitude between mmax and mmin was chosen. If the difference between mmax and

mmin is smaller (Fig. 1, line with circular markers), estimation of mmax with the same

accuracy requires significantly fewer events.

Table 1

Models of the magnitude distribution that were tested and their respective parameters used to generate the

synthetic catalogs

Model Parameters

Gutenberg-Richter (equation 5) b= 1.0 (b = 2.30)

mmin = 6.0, mmax = 8.0

Bayesian-Gutenberg-Richter (equation 9) b = 1.0 (b = 2.30), rb = 0.25

mmin ¼ 6:0, mmax ¼ 8:0

0.95 Gutenberg-Richter + 0.05 Uniform Parameters of Gutenberg-Richter distribution:

b = 1.0 (b = 2.30),

mmin = 5.0, mmax = 7.0

Parameters of uniform distribution:

mmin = 7.0, mmax = 8.0
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Estimation of mmax based on Model II. (Synthetic data are generated according to

the Gutenberg-Richter relation with fluctuating b value.) The performance of the three

estimators for model II, describing the presence of uncertainties in the b value, is

shown in Figure 3. This comparison was based on 1000 synthetic catalogues in which

the ‘‘true’’ value of mmax was 8.0, mmin was 6.0, and the b value was subjected to a

random, normally distributed error with mean equal to zero and the standard

deviation equal to 25% of the b value. The K-S estimator (which, by its nature,

ignores the uncertainty in the b value) is shown in Figure 3 where the value of mmax is

significantly overestimated. The superiority of the K-S-B estimator, which explicitly

takes into account the uncertainty in the b value over the K-S procedure, is clearly

seen. Again, the non-parametric estimate of mmax, which is slightly biased in the case

of a small number of events, is essentially the same as its parametric counterpart, K-

S-B. As a result: if one were to select the wrong magnitude distribution model for a

particular dataset, the parametric K-S procedure can largely overestimate the value

of mmax.
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Figure 2

Performance of the three derived estimators for model I (viz. the classic frequency-magnitude Gutenberg-

Richter relation). Each estimate of mmax is based on 1000 synthetic catalogues, in which the ‘‘true’’ value of

mmax ¼ 8.0, mmin ¼ 6.0, and b = 1. Both parametric estimators (viz. K-S and K-S-B) provide similar

results. When the model of magnitude distribution assumed is the same as that of the distribution of data,

the non-parametric estimate of mmax is not significantly worse than its parametric counterparts, K-S, and

K-S-B.
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Estimation of mmax based on Model III. (Synthetic data are generated according to

a mixture of the classical Gutenberg-Richter relation and characteristic events.) The

above conclusions are supported by results of the subsequent experiment shown in

Figure 4 where the results of the estimation of mmax for model III (viz. the

Gutenberg-Richter + Characteristic Earthquakes) is presented. The K-S estimation,

which is designed to assess the value of mmax for the pure Gutenberg-Richter

distribution, and which makes no provision for deviation from this model,

significantly overestimates the value of mmax. The same overestimation is yielded

(but not to such an extent) by the second parametric estimator, viz. K-S-B. The

positive bias becomes insignificant when the number of events approaches 200. The

non-parametric procedure overestimates the true value of mmax, but only slightly.

Again, the positive bias is insignificant when the number of events exceeds about 200.

4.3. The Number of Largest Events Required to Assess mmax with Sufficient Accuracy

The final experiment was designed to verify the opinion, often stated (e.g.,

DARGAHI-NOUBARY, 1983), that in order to assess the value of mmax, it is not
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Figure 3

Performance of the three derived estimators for model II, describing the presence of uncertainties in the

Gutenberg-Richter parameter, b. Each estimate of mmax is based on 1000 synthetic catalogues, in which the

‘‘true’’ value of mmax = 8.0, mmin = 6.0, the mean value of b = 1, and the b value was subjected to a

random, normally distributed error with mean equal to zero and standard deviation equal to 0.25. The K-S

estimator ignores the uncertainty in the b value and significantly overestimates mmax. The superiority of the

K-S-B estimator, which accounts for uncertainty in the b value over the K-S procedure, is clearly seen. The

non-parametric estimate of mmax is only slightly biased for a small number of events, and is essentially the

same as K-S-B.
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necessary to know a large number of events. It is considerably more important to

know the ‘‘proper’’ events, viz. the strongest ones, since the largest events bring the

most information concerning the upper end of the magnitude distribution function.

The results of the estimation of mmax by the non-parametric procedure N-P-G that

was applied only to the 5, 10 and 25 largest events are shown in Figure 5. Again, as in

all previous experiments, 1000 synthetic catalogues were generated for a range of

magnitudes equal to 2 (mmax = 8.0, mmax = 6.0), and b value equal to 1.0. As one

might expect, the largest negative bias in the estimation of mmax is produced by that

curve for which only the 5 largest events were used. The best estimate however is

obtained when all the events are used. When the number of events in the catalogue

exceeds ca. 100, all the curves (viz. those based on the 5, 10 and 25 largest events)

provide a value of mmax with an error of less than 0.1.

5. Example of Determination of mmax for Southern California

All information pertaining to the seismicity of Southern California during the last

150 years was taken from Appendix A of a paper by FIELD et al. (1999). In order to
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Figure 4

Performance of the three derived estimators for model III, taking into account the presence of

characteristic earthquakes. Each estimate of mmax is based on 1000 synthetic catalogues, in which the

‘‘true’’ value of mmax ¼ 8.0, mmin ¼ 6.0 and the b value of the Gutenberg-Richter relation is 1. Both

parametric estimators (K-S and K-S-B) significantly overestimate the value of mmax. The test shows that

when the model of magnitude distribution selected is wrong, the parametric approach can result in

unacceptably large errors. At the same time the non-parametric procedure overestimates the value of mmax
only slightly.
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be consistent with the assumption of the independence of seismic events (required by

estimators K-S and K-S-B), all aftershocks were removed. This reduced catalog also

has different levels of completeness for various time intervals. Application of the

maximum likelihood procedure to this catalog (KIJKO and SELLEVOLL, 1992), yields

the values: k̂ðmmin ¼ 5:0Þ ¼ 2:14� 0:17,b̂ ¼ 0:79� 0:06, m̂K�S
max ¼ 8:32� 0:43 and

m̂K�S�B
max ¼ 8:31� 0:43, where m̂K�S

max and m̂K�S�B
max denote, respectively, the K-S

estimator (8) and the K-S-B estimator (12).ü2 Application of the remaining

procedure to find estimates of mmax yields: m̂N�P�G
max ¼ 8:34� 0:45, where m̂N�P�G

max is

the non-parametric, Gaussian-based estimator (18). The observed, cumulative
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Figure 5

Performance of the non-parametric, N-P-G, estimator when applied to 5, 10 and 25 largest events. Each

estimate of mmax is based on 1000 synthetic catalogues, in which the ‘‘true’’ value of mmax ¼ 8.0, mmin =

6.0 and the b value of the Gutenberg-Richter relation is 1.

2 It is noteworthy that soon after its development (1987–1988), the maximum likelihood procedure as

applied above was compared with a similar technique developed by WEICHERT (1980) A summary of a

comparison between the two techniques is given WEICHERT and KIJIKO (1989). Extensive tests based on

synthetic catalogs show that for a given value of mmax, both procedures are equivalent and produce the

same results. The main difference between the two techniques lies in the fact that Weichert’s procedure

requires a priori knowledge of the maximum magnitude, while the Kijko-Sellevoll approach provides its

own estimation. In addition, the latter procedure permits the combination of the largest (earlier)

earthqukes with (later) complete data and explicityly takes into account the uncertainty in determination of

magnitude.
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number of earthquakes and its non-parametric fit for the data from Southern

California are shown in Figure 6. The value of the smoothing factor h was estimated

as 0.12. All estimated values of mmax together with their standard errors are shown in

Table 2. Standard errors of estimated values of mmax were calculated according to

formula (19) for the standard error of maximum observed magnitude rMequal to

0.25. This value is chosen arbitrarily.

All three estimated parameters differ from the corresponding values obtained by

FIELD et al. (1999), in which the least-squares fit of all data gives

k̂ðmmin ¼ 5:0Þ ¼ 3:33, b̂ ¼ 0:92, and m̂max ¼ 7:99. Clearly, the differences follow
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Figure 6

Plot of observed cumulative number of earthquakes (after FIELD et al., 1999) and the non-parametric fit

(based on CDF (16)) for the data from Southern California. The estimated value of mmax from the fit is

equal to 8.34.

Table 2

The estimated values of mmax and their standard errors. The values in the last column give the probabilities

that the current data and the applied model are sufficient to assess the value of mmax, as obtained by the three

procedures developed in this paper for Southern California. The last row shows the value of mmax = 7.99 as

obtained by FIELD et al. (1999)

Procedure m̂max � SD 1� a0

K-S 8.32 ± 0.43 0.76

K-S-B 8.31 ± 0.42 0.86

N-P-G

(based on non-parametric estimation of PDF)

8.34 ± 0.45 0.61

FIELD et al. (1999) 7.99
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from the different assumptions, the different models, the application of different

estimation procedures and the use of different data. Our assessments are based on the

Gutenberg-Richter relation only (for the K-S and K-S-B estimators), while the FIELD

et al. (1999) model contains an additional component—the occurrence of charac-

teristic earthquakes. Furthermore, the FIELD et al. (1999) model has its whole

procedure constrained by the principle of conservation of seismic moment. Our

estimates are based on the maximum likelihood principle, while the Field et al. (1999)

results originate from the least-squares fit. The FIELD et al. (1999) results are based

on all available data (main events and aftershocks), while our estimates are based

only on main earthquakes.

The fiducial distribution of mmax calculated according to the K-S, K-S-B and N-

P-G procedures is shown in Figures 7 and 8. The respective probabilities 1� a0 for
the three applied techniques are shown in Table 2. All 3 values of 1� a0 are relatively
low which indicates that all the estimated values of mmax are unreliable. According to

PISARENKO (1991), the assessment of mmax is reliable and stable when the value of

1� a0 is equal to 0.90 and higher. The low value of 1� a0 can be attributed to short
periods of observations, which in the case of Southern California is equal to ca. 150

years. Again, following PISARENKO (1991), in general, the span of the seismic

catalogue is considered to be sufficient if at least 2–3 earthquakes took place with

magnitudes close to mmax (with a difference of the order of 0.3–0.4). This condition is

not fulfilled by the current catalogue for Southern California, since the three

strongest earthquakes that took place during the last 150 years are 7.9, 7.5 and 7.3

magnitude units and the estimated maximum possible magnitude for the area, m̂max,

is close to 8.3.

For that reason, it is rather surprising that the solutions of the three equations

discussed give such similar values for the maximum possible earthquake magnitude

for Southern California. Of course, it might be coincidental. In general, since the N-

P-G procedure is, by its nature, non-parametric, and does not require specification of

the functional form of the magnitude distribution, this procedure is considered more

reliable than the model-based estimators K-S and K-S-B.

6. Discussion, Remarks and Conclusions

This paper is aimed at the determination of the maximum possible earthquake

magnitude, mmax, for a given seismogenic zone or the entire region. A generic

equation for the evaluation of mmax was developed. The equation is very flexible and

is capable of generating solutions in different forms, depending on the assumptions

relative to the model and/or regarding the available information on past seismicity.

Three special cases of the generic equation were discussed, namely:

— when earthquake magnitudes are distributed according to the doubly-truncated

Gutenberg-Richter relation,
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— when the empirical magnitude distribution deviates moderately from the

Gutenberg-Richter relation, and

— when no specific form of magnitude distribution is assumed.

The first two solutions of the generic equation (4) provide estimators of mmax that are

parametric, which have the same parameters as used in the description of the CDF of

magnitude distribution. Since the third solution of the generic equation does not

require specification of the functional form of the magnitude distribution, the

estimator of mmax obtained is non-parametric.

Tests performed on simulated seismic event catalogues are intended to model the

typical scenarios presented in the assessment of seismic hazard. Two types of

scenarios are simulated: when the assumed model of magnitude distribution is the

same as the empirical distribution of data, and when the assumed model of

magnitude distribution is wrong.

It is shown that when earthquake magnitudes rigorously follow the model of the

magnitude distribution assumed (the Gutenberg-Richter relation with the b value

close to 1 is considered), and the range of earthquake magnitudes hmmin, mmaxi does
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Figure 7

Fiducial distribution function for mmax, Southern California, when the Gutenberg-Richter and Gutenberg-

Richter-Bayes model of earthquake magnitude distributions are assumed. The vertical lines show the

median values of mmax. The respective probabilities, 1� a0, in as much as the current data and the applied
model are sufficient to assess the value of mmax, are equal to 0.76 (Gutenberg-Richter model) and 0.86

(Gutenberg-Richter-Bayesian) model. In both cases the median values of mmax are close to each other, and

are equal to 8.26 and 8.31, respectively.
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not exceed 2 units, then, on average, 50 events are enough to assess the value of mmax.

If the range of magnitudes is near 3, then an accurate assessment of mmax requires at

least 150 events.

It is demonstrated that when the model of the assumed magnitude distribution is

the same as that of the data distribution, then the non-parametric estimates of mmax
are not significantly worse than the estimates provided by the parametric approach.

On the contrary, when the model of the selected magnitude distribution is wrong, the

parametric approach can result in an unacceptably erroneous estimation of mmax.

Further, the common opinion that the value of mmax can be estimated on the

basis of knowing only the few strongest events, was tested. It is shown that for a

typical scenario (Gutenberg-Richter b value equal to 1.0 and the range of magnitude

not exceeding two units), it is enough to know only the five largest events from a

catalogue of 100 events to assess the value of mmax with an error less than 0.1.

The three estimators derived are applied in assessing the value of the maximum

earthquake magnitude for Southern California. The three estimates of mmax, using

the respective estimators (8), (12) and (18), are: 8.32 ± 0.43, 8.31 ± 0.42 and 8.34 ±

0.45. These estimates overlap when their standard deviations are taken into account.

Once more it should be noted that estimated standard errors of maximum possible
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Figure 8

Fiducial distribution function for mmax, Southern California, when the empirical distribution of magnitude

is estimated according to the N-P-G procedure. The probability, 1� a0, since the current data and applied
model are sufficient to assess the value of mmax, is equal to 0.61. The median value of mmax is equal 8.32.
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magnitudes, m̂max, depend on the chosen standard errors of maximum observed

magnitudes, rM (see equation 19). In this study a rather high but arbitrary value of

rM ¼ 0:25 was chosen, making the standard error in the estimate also conservative.

The values of m̂max for Southern California obtained from the two parametric

procedures (K-S and K-S-B procedure), differ slightly from the value obtained from

the non-parametric procedure, N-P-G. These differences can be attributed to the fact

that the first two estimators are based on the Gutenberg-Richter model of the

frequency-magnitude relation, which might not be correct for Southern California.

In general, since the N-P-G procedure is non-parametric and does not require

specification of the functional form of the magnitude distribution, its estimate of the

maximum possible magnitude mmax, is more reliable than the model-based estimators

K-S and K-S-B.

It should be noted that the applied formalism provides not only a confidence limit

for the estimated maximum possible earthquake magnitude, mmax, but also gives a

simple indicator as to how reliable the estimated maximum magnitude is.

Although the proposed procedure for assessment of the maximum earthquake

magnitude mmax is very general and tractable, it has significant shortcomings. In its

present form the procedure does not allow for the introduction of any additional

constraints, e.g., the conservation of seismic moment, the slip rate or the strain rate.

In a follow-up paper a similar procedure will be developed that allows for additional

constraints.

The computer program used for the maximum likelihood estimation of the mean

value of the seismic activity rate, k, the Gutenberg-Richter parameter, b, the K-S and
the K-S-B estimators of mmax, using incomplete and uncertain data files, is available

on request from the author at e-mail address: kijko@geoscience.org.za. Alterna-

tively, the program can be downloaded from the Council for Geoscience website at

http://www.geoscience.org.za/seismo. A detailed description of the estimation

procedure and the technique in which magnitude uncertainties and incompleteness

of the catalogue are incorporated, can be found in KIJKO and SELLEVOLL (1992).
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