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Seismic Hazard Assessment for Specified Area 
 

 

ESTIMATION OF MAXIMUM REGIONAL MAGNITUDE mmax  

 

At present there is no generally accepted method for estimating the value of the maximum 

regional magnitude mmax. The methods for evaluating mmax fall into two main categories: 

deterministic and probabilistic.  

 

The deterministic procedure most often applied is based on the empirical relationships between 

the magnitude and various tectonic and fault parameters. The relationships are variously 

developed for different seismic areas and different types of faults. In most cases, unfortunately, 

the value of the parameter mmax determined by means of any deterministic procedure is very 

uncertain. The value of mmax can also be estimated purely on the basis of the seismological 

history of the area, viz. by utilizing seismic event catalogues and appropriate statistical 

estimation procedures. In this section the authors present a statistical procedure which can be 

used for the evaluation of the maximum regional magnitude mmax. It is assumed that both the 

analytical form and the parameters of the distribution functions of earthquake magnitude are 

known.  

 

Suppose that in the area of concern, within a specified time interval T, there are n main seismic 

events with magnitudes M1, M2,..., Mn. Each magnitude Mi ≥ mmin (i = 1,…, n), where mmin is a 

known threshold of completeness (i.e. all events having magnitude greater than or equal to mmin 

are recorded). It is further assumed that the seismic event magnitudes are independent, 

identically distributed, random values with probability density function (PDF), fM(m mmin,mmax) 

and cumulative distribution function (CDF), FM(m mmin,mmax) respectively. Parameter mmax is 

the upper limit of the range of magnitudes and thus denotes the unknown maximum regional 

magnitude which is to be estimated. For the Gutenberg-Richter relation, which is a frequency-

magnitude relation, the respective CDF of earthquake magnitudes which are bounded from 

above by mmax, is  
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where β = bln(10), and b is the b-parameter of the Gutenberg-Richter relation.  

 

From the condition that compares the largest observed magnitude obsmmax  and the maximum 

expected magnitude during a specified time interval T, we obtain, after integration by parts and 

simple transformations, the maximum regional magnitude mmax (Kijko and Graham, 1998)  

 

                                            (2)

 

In the exact version of this formula, as used in our computer program, the upper limit of 

integration obsmmax  is replaced by mmax.  

 

Further modifications of estimator (2) are straightforward. For example, following the 

assumption that the number of earthquakes occurring in unit time within a specified area obeys 

the Poisson distribution with parameter λ, after replacing n by λT, estimator (2) becomes 

 

 

                                         (3) 

                                             

 

It is not difficult to show that for the Gutenberg-Richter-based magnitude CDF (1), the estimator 

(2) takes the form  

                        

                                        (4) 
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where z1 = -λA1 /(A2 - A1), z2 = -λA2 /(A2 - A1), A1 = exp(-βmmin), A2 = ( )obsmmaxexp β− , and E1 (⋅) 

denotes an exponential integral function. The above estimator of mmax for the doubly truncated 

Gutenberg-Richter relation was first obtained by Kijko (1983), who was inspired by discussions 

with M.A. Sellevoll. Consequently we refer to equation (4) as the Kijko-Sellevoll estimator or, in 

short, K-S. From equations (3) and (4), the approximate variance of the maximum regional 

magnitude maxm̂ , estimated according to the K-S procedure, is 

  

                              (5) 

                             

 

where 2
Mσ is the variance in the determination of the largest observed magnitude obsmmax .  

 

It should be noted that the above approach has several limitations. One of these is the assumption 

that the β-value in the CDF FM(m mmin,mmax) is known without error. However, it is possible for 

uncertainties in the β-value to be taken into account. Following the assumption that the variation 

of the β-value in the Gutenberg-Richter-based CDF (1) may be represented by a gamma CDF 

having parameters p and q, the compound CDF of earthquake magnitudes takes the form  

 

 

(6) 

 

 

where Cβ  is a normalizing coefficient. It is not difficult to show that p and q can be expressed 

through the mean and variance of the β-value, where ( )2/ βσβ=p  and ( )2/ βσβ=q . The 

symbol β  denotes the mean value of the parameter β, σβ is the known standard deviation of β 

and describes its uncertainty, and Cβ is equal to 1/{1-[p/(p+mmax-mmin)]q}. Equation (6) is known 

as the Bayesian Exponential-Gamma CDF of earthquake magnitude. Knowledge of equation (6) 

makes it possible to construct the Bayesian version of estimator K-S. Thus, following (3) and (5), 
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and through an application of Cramer's approximation, the Bayesian extension of the K-S 

estimator and its approximate variance becomes (Kijko and Graham, 1998): 

 

 

           (7)      

 

   

      (8) 

 

 

 

where δ = nCβ and Γ(⋅,⋅) is the Incomplete Gamma Function. The Bayesian version of the K-S 

estimator will be denoted as K-S-B. From the above relations it follows that the assessment of 

the maximum regional magnitude mmax requires knowledge of the area-specific mean seismic 

activity rate λ and the Gutenberg-Richter parameter b. The maximum likelihood procedure for 

the assessment of these two parameters is presented in the following sections. Extensive 

comparison of performances of K-S and K-S-B estimators is given by Kijko and Graham (1998).  

 

 

ASSESSMENT OF AREA-SPECIFIC PARAMETERS IN CASE OF INCOMPLETE 

DATA SETS 

 

Since the technique applied for assessment of area-specific seismic hazard parameters is similar 

to the procedure already described by Kijko and Sellevoll (1989, 1992), only the main points of 

the procedure are presented. Let us assume that in the vicinity of the specified site  

 

  (i) the occurrence of the main seismic events in time can be described 

   by a Poissonian process with an area-specific mean activity rate λ, and  

 

  (ii) earthquake magnitudes are distributed according to the doubly truncated 

  Gutenberg-Richter-based relation (1).  



Seismic Hazard Assessment for Specified Area  Council for Geoscience 5 

( ) ( ){ } ( )
( )t

tmmmtcF
tmmmF M

M
0

0max,00
max0

max

exp1
expexp

,,
λ

λλ
−−

−−−
=

 

Then the CDF of the largest magnitudes occurring during the time interval t, is (Kijko and 

Sellevoll, 1992) 

 

                                 (9) 

 

 

where cFM(m m0,mmax) = 1-FM(m m0,mmax), λ0 ≡ λ(m0) = λcFM(m0 mmin,mmax) is the mean 

activity rate of earthquake occurrence within the specified area with magnitude m0 and above, m0 

is the lower earthquake magnitude in the extreme part of the catalogue, and m0 ≥ mmin. The 

parameter λ ≡ λ(mmin) is the mean activity rate of earthquakes with magnitude mmin and above. 

Magnitude mmin is the minimum threshold magnitude for the entire catalogue (Figure 1).  

 

 

 
Figure 1. Illustration of data which can be used to obtain basic seismic hazard parameters for the area in the 
vicinity of the selected site by the procedure used. The approach permits the combination of largest earthquake data 
and complete data having variable threshold magnitudes. It allows the use of the largest known historical 
earthquake (m obs

max ) which occurred before the catalogue began. It also accepts “gaps” (Tg) when records were 
missing or the seismic networks were out of operation. Uncertainty in earthquake magnitude is also taken into 
account in that an assumption is made that the observed magnitude is true magnitude subjected to a random error 
that follows a Gaussian distribution having zero mean and a known standard deviation. After Kijko and Sellevoll 
(1992). 
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If the error in the determination of magnitude is assumed to be normally distributed with 

standard deviation σM  (Tinti and Mulargia, 1985a,b), the CDF of the apparent magnitude 

becomes (Gibowicz and Kijko, 1994)  

 

                        (10) 

 

where D(m,σM) = {A1[erf(y1) + 1] + A2[erf(y2) - 1] - 2C(m,σM)A(m)}/2[A1-A(m)], C(m,σM) = 

0.5exp(χ 2)[erf(y1 + χ) + erf((y2 - χ)], y1 = (m-mmin)/ 2 σM, y2 = (mmax-m)/ 2 σM, σM denotes the 

standard error of earthquake magnitude determination, A(m) = exp(-βm), A1 = exp(-βmmin), A2 = 

exp(-βmmax), erf(⋅) is the error function, 2/Mβσχ = , and the magnitude m is unbounded from 

both ends. Further application of CDF (10) requires additional renormalizations. If mC is the cut-

off value of apparent magnitude, at and above which the earthquakes are complete, then its 

normalized CDF ( )MCM mmmF σ,,~
max  is zero up to mC, and is equal to FM(m mmin,mmax,σM)/[1 - 

FM(mC mmin,mmax,σM)] for m ≥ mC. Finally, from the assumed model of apparent magnitude it 

follows that the "true" mean activity rate λ(m) must be replaced by its "apparent" counterpart, 

( )mλ~ , according to the approximate relation ( )mλ~  = λ(m)exp(χ 2).  

 

From the definition of PDF and from relations (9) and (10) it follows that the PDF of the 

strongest earthquake within a period t, with apparent magnitude m ≥ m0 and standard deviation 

σM, is 

                                                                                                               

                          

(11) 

 

 

where ( )MM tmmmFc σ,,,~
max0  =  ( )MM tmmmF σ,,,~1 max0− .  
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After introducing the PDF (11), one can construct the likelihood function of the strongest 

earthquake magnitudes from the extreme part of the catalogue. Such a function depends on the 

unknown area-characteristic parameters (λ,β), and becomes 

   

                             (12) 

 

In relation (12), the m0j is the apparent magnitude of the strongest earthquake occurring during 

the time interval tj, σM0j is the value of its standard deviation, j = 1,..., n0, and n0 is the number of 

earthquakes in the extreme part of the catalogue.  

 

It is assumed that the second, complete part of the catalogue can be divided into s sub-catalogues 

(Figure 1). Each of them has a time span Ti and is complete, starting from the known magnitude 
)(

min
im . For each sub-catalogue i, mij is the apparent magnitude, )(

min
i

ij mm ≥ , and σMij is its standard 

deviation, j = 1,..., ni, where ni denotes the number of earthquakes in each complete sub-

catalogue and i = 1,...,s. If the size of seismic events is independent of their number, the 

likelihood function of earthquake magnitudes present in each complete sub-catalogue i, is equal 

to Li(λ,β) = Li(β) Li(λ), which is the product of the function of β, Li(β), and the function of λ, 

Li(λ). Following the definition of the likelihood function of a set of independent observations, 

the function Li(λ) is given by  ( )∏
=

in

j
Mij

i
ijM mmmfconst

1
max

)(
min ,,~ σ . The assumption that the number 

of earthquakes per unit time is a Poisson random variable gives a form of Li(λ) equal to 

( ) ( )ii
n

ii textconst i λλ ~~ − , where const is a normalizing factor and 1
~λ is the apparent, mean activity 

rate for the complete sub-catalogue i. For the ith complete sub-catalogue the true mean activity 

rate is equal to ( )( ) ( )maxmin
)(

minmin ,mmmcFm i
M

i
i λλλ =≡ . Functions Li(β) and Li(λ), for i = 1,...,s, 

define the likelihood functions for each complete sub-catalogue. Finally, the joint likelihood 

function of all data in the catalogue, extreme and complete, is given by: 

 

                                                     (13) 
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The maximum likelihood estimates λ and β are the values of λ̂  and β̂  that maximize the 

likelihood function (13). From a formal point of view, the maximum likelihood estimate of mmax 

is simply the largest observed earthquake magnitude obsmmax . This follows from the fact that the 

likelihood function (13) decreases monotonically for ∞→maxm .  

 

Therefore, by including one of the formulae for mmax [the K-S estimator (4) or its Bayesian 

version (eq. 7)] and by putting ∂lnL(λ,β)/∂λ = 0 and ∂lnL(λ,β)/∂λ = 0, we obtain a set of 

equations determining the maximum likelihood estimate of the area-specific parameters βλ ˆ,ˆ  

and maxm̂ . Such a set of equations is given by Kijko and Sellevoll (1989, 1992), and can be 

solved by an iterative scheme.  

 

  

 

REFERENCES 

 

Gibowicz, S.J. and Kijko, A. (1994). An Introduction to Mining Seismology (Academic Press), 
San Diego.  

 
Kijko, A. (1983), A modified form of the first Gumbel distribution: model for the occurrence of 

large earthquakes, Part II: Estimation of parameters, Acta Geophys. Pol., 31, 27-39.  
 
Kijko, A. and Graham, G. (1998), "Parametric-Historic" procedure for probabilistic seismic 

hazard analysis. Part I: Assessment of maximum regional magnitude mmax, Pure Appl. 
Geophys, 152, 413-442.  

 
Kijko, A. and Sellevoll, M.A. (1989), Estimation of earthquake hazard parameters from 

incomplete data files, Part I, Utilization of extreme and complete catalogues with different 
threshold magnitudes, Bull. Seism. Soc. Am. 79, 645-654. 

 
Kijko, A. and Sellevoll, M.A. (1992), Estimation of earthquake hazard parameters from 

incomplete data files, Part II, Incorporation of magnitude heterogeneity, Bull. Seism. Soc. 
Am. 82, 120-134. 

 
Tinti, S. and Mulargia, F. (1985a), Effects of magnitude uncertainties in the Gutenberg-Richter 

frequency-magnitude law, Bull. Seism. Soc. Am. 75, 1681-1697.  
 



Seismic Hazard Assessment for Specified Area  Council for Geoscience 9 

Tinti, S. and Mulargia, F. (1985b), Application of the extreme value approaches to the apparent 
magnitude distribution of the earthquakes, Pure Appl. Geophys. 123, 199-220.  

 
 

 


	REFERENCES

