Seismic Hazard Assessment for Specified Area

ESTIMATION OF MAXIMUM REGIONAL MAGNITUDE mpax

At present there is no generally accepted method for estimating the value of the maximum
regional magnitude mmax. The methods for evaluating mm.x fall into two main categories:

deterministic and probabilistic.

The deterministic procedure most often applied is based on the empirical relationships between
the magnitude and various tectonic and fault parameters. The relationships are variously
developed for different seismic areas and different types of faults. In most cases, unfortunately,
the value of the parameter mn,x determined by means of any deterministic procedure is very
uncertain. The value of mpya can also be estimated purely on the basis of the seismological
history of the area, viz. by utilizing seismic event catalogues and appropriate statistical
estimation procedures. In this section the authors present a statistical procedure which can be
used for the evaluation of the maximum regional magnitude myay. It is assumed that both the
analytical form and the parameters of the distribution functions of earthquake magnitude are

known.

Suppose that in the area of concern, within a specified time interval T, there are n main seismic
events with magnitudes M;, My,..., M. Each magnitude M; = mpi, (1 = 1,..., n), where mp;y IS a
known threshold of completeness (i.e. all events having magnitude greater than or equal to mpin
are recorded). It is further assumed that the seismic event magnitudes are independent,
identically distributed, random values with probability density function (PDF), fm(mOmmin,Mmax)
and cumulative distribution function (CDF), Fm(mOmpyin,Mmax) respectively. Parameter mpyay is
the upper limit of the range of magnitudes and thus denotes the unknown maximum regional
magnitude which is to be estimated. For the Gutenberg-Richter relation, which is a frequency-
magnitude relation, the respective CDF of earthquake magnitudes which are bounded from

above by Mpax, IS
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(1)

for m<mpin,
1- exp[— B(m =M )]
1- exp[— ,B(mmax ~ Mmin )]

Fm (m|mminrmmax)= ' for Mpin SM<Mpyay,

1 for m>may-

where = bIn(10), and b is the b-parameter of the Gutenberg-Richter relation.

From the condition that compares the largest observed magnitude m® and the maximum

max
expected magnitude during a specified time interval T, we obtain, after integration by parts and

simple transformations, the maximum regional magnitude mmax (Kijko and Graham, 1998)

obs
Mimax

Mmax = obs + I[F (m|mmm, obs )] dm. (2)

max max

mmln
In the exact version of this formula, as used in our computer program, the upper limit of

integration m®> is replaced by Mpax.

Further modifications of estimator (2) are straightforward. For example, following the
assumption that the number of earthquakes occurring in unit time within a specified area obeys

the Poisson distribution with parameter A, after replacing n by AT, estimator (2) becomes

obs
Mmax

Mmax =M T J-[F (m|mm|n’ mox )] dm. (3)

max max

mmm

It is not difficult to show that for the Gutenberg-Richter-based magnitude CDF (1), the estimator
(2) takes the form

B eXp(_ Tz, )
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where 23 = -AAy I(Ag - Ay), 2o = -AAg I(Ag - Ar), Ar = eXp(-BMimin), Az = exp(~ An® ), and Ey (1)

denotes an exponential integral function. The above estimator of mpax for the doubly truncated
Gutenberg-Richter relation was first obtained by Kijko (1983), who was inspired by discussions
with M.A. Sellevoll. Consequently we refer to equation (4) as the Kijko-Sellevoll estimator or, in
short, K-S. From equations (3) and (4), the approximate variance of the maximum regional

magnitudem, . , estimated according to the K-S procedure, is
2
Var(rﬁmaxj =g} + { E,(12,) - E\(T2) , m,,.exp(- AT) ()
,BeXp(_ Tzz)

obs
max *

where oﬁ,l is the variance in the determination of the largest observed magnitude m

It should be noted that the above approach has several limitations. One of these is the assumption
that the -value in the CDF Fy(mOmpyin,Mmax) IS known without error. However, it is possible for
uncertainties in the S-value to be taken into account. Following the assumption that the variation
of the S-value in the Gutenberg-Richter-based CDF (1) may be represented by a gamma CDF

having parameters p and g, the compound CDF of earthquake magnitudes takes the form

0 for m<m,_,,,
I:M (m|mminmmax): C,B{l_[p/(p +m _mmin)]q}’ for mmin Smsmmax’ (6)
1 for m>m_,,.

where Cg is a normalizing coefficient. It is not difficult to show that p and g can be expressed

through the mean and variance of the [value, where p:,[?/(aﬁ)2 and q:(ﬁlaﬁ)z. The

symbol B denotes the mean value of the parameter S, o is the known standard deviation of 8

and describes its uncertainty, and Cg is equal to 1/{1-[p/(p+Mmax-Mmin)]*}. Equation (6) is known
as the Bayesian Exponential-Gamma CDF of earthquake magnitude. Knowledge of equation (6)

makes it possible to construct the Bayesian version of estimator K-S. Thus, following (3) and (5),
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and through an application of Cramer's approximation, the Bayesian extension of the K-S

estimator and its approximate variance becomes (Kijko and Graham, 1998):

.~ obs 51/q+2exp|nrq/(1—rq)|
Mmax = Mmax + B

[r(—llq,arq)— F(—l/q,é')] ()

(8)

V(] ot + {mlqﬂexptrq,@_rq] [r(-l/q,&q)_r(_l,q,a)]}z

where 0= nCpg and I'(LL)} is the Incomplete Gamma Function. The Bayesian version of the K-S
estimator will be denoted as K-S-B. From the above relations it follows that the assessment of
the maximum regional magnitude mmax requires knowledge of the area-specific mean seismic
activity rate A and the Gutenberg-Richter parameter b. The maximum likelihood procedure for
the assessment of these two parameters is presented in the following sections. Extensive

comparison of performances of K-S and K-S-B estimators is given by Kijko and Graham (1998).

ASSESSMENT OF AREA-SPECIFIC PARAMETERS IN CASE OF INCOMPLETE
DATA SETS

Since the technique applied for assessment of area-specific seismic hazard parameters is similar
to the procedure already described by Kijko and Sellevoll (1989, 1992), only the main points of

the procedure are presented. Let us assume that in the vicinity of the specified site

(1) the occurrence of the main seismic events in time can be described

by a Poissonian process with an area-specific mean activity rate A, and

(ii) earthquake magnitudes are distributed according to the doubly truncated

Gutenberg-Richter-based relation (1).
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Then the CDF of the largest magnitudes occurring during the time interval t, is (Kijko and
Sellevoll, 1992)

max - A tcF, max ] -At 9
Fu (m|mo’mmax,t):exp{ o “;-(inLT(;?lez) eXp( 0) ©)

where cFpm(MOMg,Mpax) = 1-Fm(MOMo,Mmax), Ao = A(Mg) = ACFm(MoCMmin,Mmax) 1S the mean
activity rate of earthquake occurrence within the specified area with magnitude my and above, m
is the lower earthquake magnitude in the extreme part of the catalogue, and my = myn. The
parameter A = A(mmin) is the mean activity rate of earthquakes with magnitude my,;, and above.

Magnitude mpm;n is the minimum threshold magnitude for the entire catalogue (Figure 1).

N(m,c,)
m = Observed Apparent Magnitude
I-q, | ! ©,, = Standard Deviation
1 1

e
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Figure 1. Illustration of data which can be used to obtain basic seismic hazard parameters for the area in the
vicinity of the selected site by the procedure used. The approach permits the combination of largest earthquake data

and complete data having variable threshold magnitudes. It allows the use of the largest known historical

earthquake (m ‘r’nb;X) which occurred before the catalogue began. It also accepts “gaps™ (Ty) when records were

missing or the seismic networks were out of operation. Uncertainty in earthquake magnitude is also taken into
account in that an assumption is made that the observed magnitude is true magnitude subjected to a random error
that follows a Gaussian distribution having zero mean and a known standard deviation. After Kijko and Sellevoll
(1992).
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If the error in the determination of magnitude is assumed to be normally distributed with
standard deviation oy (Tinti and Mulargia, 1985a,b), the CDF of the apparent magnitude
becomes (Gibowicz and Kijko, 1994)

I:M (m|mmin ,M UM ) = I:M (m|mmin ' mmax) D(m’ UM ) (10)

max?

where D(m,on) = {Alferf(y) + 1] + Agerf(y2) - 1] - 2C(m,om)A(M)}2[A1-A(m)], C(m,0om) =

0.5exp(x )[erf(ys + x) + erf((y2 - Y1, Y1 = (M-Mrin)/ /2 G, Y2 = (Mmax-M)/ +/2 G, G denotes the
standard error of earthquake magnitude determination, A(m) = exp(-£8m), A1 = exp(-BMmin), Az =
exp(-BmMmax), erf(Dl is the error function, x = So,, /+/2, and the magnitude m is unbounded from
both ends. Further application of CDF (10) requires additional renormalizations. If mc is the cut-
off value of apparent magnitude, at and above which the earthquakes are complete, then its

normalized CDF IEM (m|mc,mmaX,JM) IS zero up to me, and is equal to Fp;(MOMmin,Mmax,Om)/[1 -

Fm(McOMpin,Mmax,0m)] for m = me. Finally, from the assumed model of apparent magnitude it

follows that the "true” mean activity rate A(m) must be replaced by its "apparent” counterpart,

A(m), according to the approximate relation A(m) = A(m)exp(x ).

From the definition of PDF and from relations (9) and (10) it follows that the PDF of the
strongest earthquake within a period t, with apparent magnitude m > m, and standard deviation

Ow, IS

~

A, (m|m0, m

max !

t, UM )@Xpl.,_ j-O'[QI‘:"M (m|m0’ mmax ' t’ UM )J

Loy)= 1-exp(- At)

£, (m|m,, m : (11)

max !

where cF,, (mmy,m...t.0,,) = 1-F, (mm,,m...t.0,, ).
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After introducing the PDF (11), one can construct the likelihood function of the strongest
earthquake magnitudes from the extreme part of the catalogue. Such a function depends on the

unknown area-characteristic parameters (A,£3), and becomes
Mo
L,(4,8) = const [] fhjl“ax(moj‘mo,mmax,toj,JMOJ.) (12)
j=1

In relation (12), the my; is the apparent magnitude of the strongest earthquake occurring during
the time interval t;, omg; is the value of its standard deviation, j = 1,..., no, and ng is the number of

earthquakes in the extreme part of the catalogue.

It is assumed that the second, complete part of the catalogue can be divided into s sub-catalogues

(Figure 1). Each of them has a time span T; and is complete, starting from the known magnitude

m®

min *

For each sub-catalogue i, mjj is the apparent magnitude, m; > m®  and Oiij 1S its standard

deviation, j=1,..., nj, where n; denotes the number of earthquakes in each complete sub-
catalogue and i = 1,..,s. If the size of seismic events is independent of their number, the
likelihood function of earthquake magnitudes present in each complete sub-catalogue i, is equal
to Li(A,0) = Li(H) Li(A), which is the product of the function of £, Li(8), and the function of A,

Li(A). Following the definition of the likelihood function of a set of independent observations,

min !

the function L;i(1) is given by constﬂ f,, (mij‘m(‘) mmax,aMij). The assumption that the number
j=1

of earthquakes per unit time is a Poisson random variable gives a form of L;(A) equal to

const (/Titi )ni ex(— /Tt.), where const is a normalizing factor and A~l is the apparent, mean activity

rate for the complete sub-catalogue i. For the ith complete sub-catalogue the true mean activity

rate is equal to A E/\(m(i) ):/\cFM (mr(nii)n mmin,mmax). Functions Li(8) and Li(A), for i = 1,...;s,

min

define the likelihood functions for each complete sub-catalogue. Finally, the joint likelihood
function of all data in the catalogue, extreme and complete, is given by:

Ng

LA.B)=[]L.8) (13)

1=0
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The maximum likelihood estimates A and [ are the values of A and ,[? that maximize the
likelihood function (13). From a formal point of view, the maximum likelihood estimate of My

is simply the largest observed earthquake magnitude m®: . This follows from the fact that the

max *

likelihood function (13) decreases monotonically for m_,, — oo.

Therefore, by including one of the formulae for mma [the K-S estimator (4) or its Bayesian
version (eq. 7)] and by putting dInL(A,5)/04 = 0 and 0dInL(A,B)/0A = 0, we obtain a set of

equations determining the maximum likelihood estimate of the area-specific parameters A, ,[?
and m_, . Such a set of equations is given by Kijko and Sellevoll (1989, 1992), and can be

solved by an iterative scheme.
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